Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >行人重识别 Person Re-identification知识资料全集

行人重识别 Person Re-identification知识资料全集

作者头像
企鹅号小编
发布于 2017-12-29 09:42:21
发布于 2017-12-29 09:42:21
4.5K0
举报
文章被收录于专栏:企鹅号快讯企鹅号快讯

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢!专知为大家呈送专知主题荟萃知识资料大全集荟萃(入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复"专知"进入专知,搜索感兴趣主题查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家转发分享~

行人重识别 Person Re-identification / Person Retrieval 专知荟萃

行人重识别 Person Re-identification / Person Retrieval 专知荟萃

入门学习

进阶论文及代码

Person Re-identification / Person Retrieval

Person Search

Re-ID with GAN

Vehicle Re-ID

Deep Metric Learning

Re-ID with Attributes Prediction

Video-based Person Re-Identification

Re-ranking

实战项目

教程

综述

数据集

图像数据集

Attribute相关数据集

视频相关数据集

NLP相关数据集

领域专家

入门学习

行人重识别综述

[http://www.jianshu.com/p/98cc04cca0ae?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation\]

基于深度学习的Person Re-ID(综述)

郑哲东 -Deep-ReID:行人重识别的深度学习方法

PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]

视频:[http://www.bilibili.com/video/av13796843/]

【行人识别】Deep Transfer Learning for Person Re-identification

知乎专栏:行人重识别 [https://zhuanlan.zhihu.com/personReid]

行人重识别综述:从哈利波特地图说起

行人再识别中的迁移学习:图像风格转换(Learning via Translation)

行人对齐+重识别网络

SVDNet for Pedestrian Retrieval:CNN到底认为哪个投影方向是重要的?

用GAN生成的图像做训练?Yes!

2017 ICCV 行人检索/重识别 接受论文汇总

人脸识别 到 行人重识别,下一个风口

GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?

[https://www.zhihu.com/question/53001881/answer/170077548]

Re-id Resources

[https://wangzwhu.github.io/home/re_id_resources.html\]

行人再识别(行人重识别)【包含与行人检测的对比】

行人重识别综述(Person Re-identification: Past, Present and Future)

进阶论文及代码

Person Re-identification / Person Retrieval

intro: CVPR 2014

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf]

An Improved Deep Learning Architecture for Person Re-Identification

intro: CVPR 2015

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf]

github: [https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID]

Deep Ranking for Person Re-identification via Joint Representation Learning

intro: IEEE Transactions on Image Processing [TIP], 2016

arxiv: [https://arxiv.org/abs/1505.06821]

PersonNet: Person Re-identification with Deep Convolutional Neural Networks

arxiv: [http://arxiv.org/abs/1601.07255]

Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification

intro: CVPR 2016

arxiv: [https://arxiv.org/abs/1604.07528]

github: [https://github.com/Cysu/dgd_person_reid]

Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

intro: CVPR 2016

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cheng_Person_Re-Identification_by_CVPR_2016_paper.pdf]

End-to-End Comparative Attention Networks for Person Re-identification

[https://arxiv.org/abs/1606.04404]

A Multi-task Deep Network for Person Re-identification

arxiv: [http://arxiv.org/abs/1607.05369]

Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

arxiv: [http://arxiv.org/abs/1607.08378]

A Siamese Long Short-Term Memory Architecture for Human Re-Identification

arxiv: [http://arxiv.org/abs/1607.08381]

Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

arxiv: [https://arxiv.org/abs/1607.08378]

Person Re-identification: Past, Present and Future

[https://arxiv.org/abs/1610.02984]

Deep Learning Prototype Domains for Person Re-Identification

arxiv: [https://arxiv.org/abs/1610.05047]

Deep Transfer Learning for Person Re-identification

arxiv: [https://arxiv.org/abs/1611.05244]

A Discriminatively Learned CNN Embedding for Person Re-identification

arxiv: [https://arxiv.org/abs/1611.05666]

github[MatConvnet]: [https://github.com/layumi/2016_person_re-ID]

Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification

arxiv: [https://arxiv.org/abs/1702.04179]

In Defense of the Triplet Loss for Person Re-Identification

arxiv: [https://arxiv.org/abs/1703.07737]

github[Theano]: [https://github.com/VisualComputingInstitute/triplet-reid]

Beyond triplet loss: a deep quadruplet network for person re-identification

intro: CVPR 2017

arxiv: [https://arxiv.org/abs/1704.01719]

Part-based Deep Hashing for Large-scale Person Re-identification

intro: IEEE Transactions on Image Processing, 2017

arxiv: [https://arxiv.org/abs/1705.02145]

Deep Person Re-Identification with Improved Embedding

[https://arxiv.org/abs/1705.03332]

Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

arxiv: [https://arxiv.org/abs/1705.04608]

github: [https://github.com/VisualComputingInstitute/towards-reid-tracking]

Person Re-Identification by Deep Joint Learning of Multi-Loss Classification

intro: IJCAI 2017

arxiv: [https://arxiv.org/abs/1705.04724]

Attention-based Natural Language Person Retrieval

intro: CVPR 2017 Workshop [vision meets cognition]

keywords: Bidirectional Long Short- Term Memory [BLSTM]

arxiv: [https://arxiv.org/abs/1705.08923]

Unsupervised Person Re-identification: Clustering and Fine-tuning

arxiv: [https://arxiv.org/abs/1705.10444]

github: [https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning]

Deep Representation Learning with Part Loss for Person Re-Identification

[https://arxiv.org/abs/1707.00798]

Pedestrian Alignment Network for Large-scale Person Re-identification

[https://raw.githubusercontent.com/layumi/Pedestrian_Alignment/master/fig2.jpg]

arxiv: [https://arxiv.org/abs/1707.00408]

github: [https://github.com/layumi/Pedestrian_Alignment]

Deep Reinforcement Learning Attention Selection for Person Re-Identification

[https://arxiv.org/abs/1707.02785]

Learning Efficient Image Representation for Person Re-Identification

[https://arxiv.org/abs/1707.02319]

Person Re-identification Using Visual Attention

intro: ICIP 2017

arxiv: [https://arxiv.org/abs/1707.07336]

Deeply-Learned Part-Aligned Representations for Person Re-Identification

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1707.07256]

What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

[https://arxiv.org/abs/1707.07074]

Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification

[https://arxiv.org/abs/1707.07791]

Divide and Fuse: A Re-ranking Approach for Person Re-identification

intro: BMVC 2017

arxiv: [https://arxiv.org/abs/1708.04169]

Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification

intro: IEEE Transactions on Multimedia

arxiv: [https://arxiv.org/abs/1708.05512]

Multi-scale Deep Learning Architectures for Person Re-identification

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1709.05165]

Pose-driven Deep Convolutional Model for Person Re-identification

[https://arxiv.org/abs/1709.08325]

HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

intro: ICCV 2017. CUHK & SenseTime,

arxiv: [https://arxiv.org/abs/1709.09930]

github: [https://github.com/xh-liu/HydraPlus-Net]

Person Re-Identification with Vision and Language

[https://arxiv.org/abs/1710.01202]

Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

[https://arxiv.org/abs/1710.00478]

Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

intro: CVPR 2017. CASIA

keywords: Multi-Scale Context-Aware Network [MSCAN]

arxiv: [https://arxiv.org/abs/1710.06555]

Pseudo-positive regularization for deep person re-identification

[https://arxiv.org/abs/1711.06500]

Let Features Decide for Themselves: Feature Mask Network for Person Re-identification

keywords: Feature Mask Network [FMN]

arxiv: [https://arxiv.org/abs/1711.07155]

Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification

[https://arxiv.org/abs/1711.07027]

intro: Megvii, Inc & Zhejiang University

arxiv: [https://arxiv.org/abs/1711.08184]

evaluation website: [Market1501]: [http://reid-challenge.megvii.com/]

evaluation website: [CUHK03]: [http://reid-challenge.megvii.com/cuhk03]

Region-based Quality Estimation Network for Large-scale Person Re-identification

intro: AAAI 2018

arxiv: [https://arxiv.org/abs/1711.08766]

Deep-Person: Learning Discriminative Deep Features for Person Re-Identification

[https://arxiv.org/abs/1711.10658]

A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

arxiv: [https://arxiv.org/abs/1711.10378]

github: [https://github.com/pse-ecn/pose-sensitive-embedding]

Person Search

Joint Detection and Identification Feature Learning for Person Search

intro: CVPR 2017

keywords: Online Instance Matching OIM loss function

homepage[dataset+code]:[http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html]

arxiv: [https://arxiv.org/abs/1604.01850]

paper: [http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf]

github[official. Caffe]: [https://github.com/ShuangLI59/person_search]

Person Re-identification in the Wild

intro: CVPR 2017 spotlight

keywords: PRW dataset

project page: [http://www.liangzheng.com.cn/Project/project_prw.html]

arxiv: [https://arxiv.org/abs/1604.02531]

github: [https://github.com/liangzheng06/PRW-baseline]

IAN: The Individual Aggregation Network for Person Search

[https://arxiv.org/abs/1705.05552]

Neural Person Search Machines

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1707.06777]

Re-ID with GAN

Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1701.07717]

github: [https://github.com/layumi/Person-reID_GAN]

Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

[https://arxiv.org/abs/1711.08565]

Vehicle Re-ID

Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1708.03918]

Deep Metric Learning

Deep Metric Learning for Person Re-Identification

intro: ICPR 2014

paper: [http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Yi-ICPR-14.pdf]

Deep Metric Learning for Practical Person Re-Identification

[https://arxiv.org/abs/1407.4979]

Constrained Deep Metric Learning for Person Re-identification

[https://arxiv.org/abs/1511.07545]

DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer

intro: TuSimple

keywords: pedestrian re-identification

arxiv: [https://arxiv.org/abs/1707.01220]

Re-ID with Attributes Prediction

Deep Attributes Driven Multi-Camera Person Re-identification

intro: ECCV 2016

arxiv: [https://arxiv.org/abs/1605.03259]

Improving Person Re-identification by Attribute and Identity Learning

[https://arxiv.org/abs/1703.07220]

Video-based Person Re-Identification

Recurrent Convolutional Network for Video-based Person Re-Identification

intro: CVPR 2016

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf]

github: [https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID]

Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach

[https://arxiv.org/abs/1606.01609]

Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1708.02286]

Three-Stream Convolutional Networks for Video-based Person Re-Identification

[https://arxiv.org/abs/1712.01652]

Re-ranking

Re-ranking Person Re-identification with k-reciprocal Encoding

intro: CVPR 2017

arxiv: [https://arxiv.org/abs/1701.08398]

github: [https://github.com/zhunzhong07/person-re-ranking]

实战项目

intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce [near] state-of-the-art results.

project page: [https://cysu.github.io/open-reid/]

github[PyTorch]: [https://github.com/Cysu/open-reid]

examples: [https://cysu.github.io/open-reid/examples/training_id.html]

benchmarks: [https://cysu.github.io/open-reid/examples/benchmarks.html]

caffe-PersonReID

intro: Person Re-Identification: Multi-Task Deep CNN with Triplet Loss

gtihub: [https://github.com/agjayant/caffe-Person-ReID]

DukeMTMC-reID_baseline Matlab

[https://github.com/layumi/DukeMTMC-reID_baseline]

Code for IDE baseline on Market-1501

[https://github.com/zhunzhong07/IDE-baseline-Market-1501]

教程

1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking

[https://reid-mct.github.io/]

郑哲东 -Deep-ReID:行人重识别的深度学习方法

PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]

视频:[http://www.bilibili.com/video/av13796843/]

Person Identification in Large Scale Camera Networks Wei-Shi Zheng (郑伟诗)

[http://isee.sysu.edu.cn/~zhwshi/Research/ADL-OPEN.pdf\]

Person Re-Identification: Theory and Best Practice

[http://www.micc.unifi.it/reid-tutorial/slides/]

综述

Person Re-identification: Past, Present and Future Liang Zheng, Yi Yang, Alexander G. Hauptmann

[https://arxiv.org/abs/1610.02984]

Person Re-Identification Book

[https://link.springer.com/book/10.1007/978-1-4471-6296-4]

A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets

[http://lanl.arxiv.org/abs/1605.09653]

People reidentification in surveillance and forensics: A survey

[https://dl.acm.org/citation.cfm?doid=2543581.2543596]

数据集

Re-ID 数据集汇总

[https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html]

图像数据集

Market-1501 Dataset 751个人,27种属性,一共约三万张图像(一人多图)

[http://www.liangzheng.org/Project/project_reid.html\]

Code for IDE baseline on Market-1501 :[https://github.com/zhunzhong07/IDE-baseline-Market-1501]

DukeMTMC-reID DukeMTMC数据集的行人重识别子集,原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且提供了人工标注的bounding box。最终,DukeMTMC-reID 包含了 16,522张训练图片(来自702个人), 2,228个查询图像(来自另外的702个人),以及 17,661 张图像的搜索库(gallery)。并提供切割后的图像供下载。

[https://github.com/layumi/DukeMTMC-reID_evaluation\]

CUHK01, 02, 03

[http://www.ee.cuhk.edu.hk/~rzhao/\]

Attribute相关数据集

RAP

[https://link.zhihu.com/?target=http%3A//rap.idealtest.org/]

Attribute for Market-1501and DukeMTMC_reID

[https://link.zhihu.com/?target=https%3A//vana77.github.io/]

视频相关数据集

Mars

[http://liangzheng.org/Project/project_mars.html]

PRID2011

[https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/]

NLP相关数据集:

自然语言搜图像

[http://xiaotong.me/static/projects/person-search-language/dataset.html]

自然语言搜索行人所在视频

[http://www.mi.t.u-tokyo.ac.jp/projects/person_search]

领域专家

Shaogang Gong -[http://www.eecs.qmul.ac.uk/~sgg/\]

Xiaogang Wang

[http://www.ee.cuhk.edu.hk/~xgwang/\]

Weishi Zheng

[https://sites.google.com/site/sunnyweishi/]

Liang Zheng

Chen Change Loy

[https://staff.ie.cuhk.edu.hk/~ccloy/\]

Qi Tian

[http://www.cs.utsa.edu/~qitian/tian-publication-year.html\]

Shengcai Liao

[http://www.cbsr.ia.ac.cn/users/scliao/]

Rui Zhao

[http://www.ee.cuhk.edu.hk/~rzhao/\]

Yang Yang

[http://www.cbsr.ia.ac.cn/users/yyang/main.htm]

Ling Shao

Ziyan Wu

[http://wuziyan.com/]

DaPeng Chen

[http://gr.xjtu.edu.cn/web/dapengchen/home]

Horst Bischof

[https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s]

Niki Martinel

[http://users.dimi.uniud.it/~niki.martinel/\]

Liang Lin

[http://hcp.sysu.edu.cn/home/]

Le An

Xiang Bai

[http://mc.eistar.net/~xbai/index.html\]

Xiaoyuan Jing

[http://mla.whu.edu.cn/plus/list.php?tid=2]

Fei Xiong

[http://robustsystems.coe.neu.edu/?q=content/research]

DaPeng Chen

[http://gr.xjtu.edu.cn/web/dapengchen/home]

特别提示-专知行人重识别主题:

本文来自企鹅号 - 专知媒体

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文来自企鹅号 - 专知媒体

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
深度 | 用于大规模行人重识别的行人对齐网络
1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。类比于自然语言处理(nlp)的话,大家或者集中于语义层面的设计(比如设计 loss,triplet loss,identi+verif loss),或者集中于语法层面上(利用人体的内在结构,比如水平切割,pose预测)。 这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。现有大数据集往往采用自动检测的方法,比如 DPM 来检测行人,把行
AI科技评论
2018/03/14
1.8K0
深度 | 用于大规模行人重识别的行人对齐网络
【论文推荐】最新六篇行人再识别相关论文—特定视角、多目标、双注意匹配网络、联合属性-身份、迁移学习、多通道金字塔型
【导读】专知内容组整理了最近六篇行人再识别(Person Re-Identification)相关文章,为大家进行介绍,欢迎查看! 1. Learning View-Specific Deep Networks for Person Re-Identification(学习特定视角深度网络的行人再识别) ---- ---- 作者:Zhanxiang Feng,Jianhuang Lai,Xiaohua Xie 摘要:In recent years, a growing body of research ha
WZEARW
2018/04/16
2.3K0
【论文推荐】最新六篇行人再识别相关论文—特定视角、多目标、双注意匹配网络、联合属性-身份、迁移学习、多通道金字塔型
【论文推荐】最新六篇行人再识别(ReID)相关论文—和谐注意力网络、时序残差学习、评估和基准、图像生成、三元组、对抗属性-图像
【导读】专知内容组整理了最近六篇行人再识别(Person Re-Identification)相关文章,为大家进行介绍,欢迎查看! 1. Harmonious Attention Network for Person Re-Identification(和谐注意力网络的行人再识别) ---- ---- 作者:Wei Li,Xiatian Zhu,Shaogang Gong 摘要:Existing person re-identification (re-id) methods either assume t
WZEARW
2018/04/16
1.8K0
【论文推荐】最新六篇行人再识别(ReID)相关论文—和谐注意力网络、时序残差学习、评估和基准、图像生成、三元组、对抗属性-图像
【论文推荐】最新5篇行人重识别( Person Re-ID)相关论文—样本生成、超越人类、实践指南、姿态归一化、图像生成
【导读】专知内容组整理了最近五篇行人重识别( Person Re-Identification)相关文章,为大家进行介绍,欢迎查看! 1. Multi-pseudo Regularized Label for Generated Samples in Person Re-Identification(行人重识别:基于多伪正则化标签的样本生成方法) ---- ---- 作者:Yan Huang,Jinsong Xu,Qiang Wu,Zhedong Zheng,Zhaoxiang Zhang,Jian Zha
WZEARW
2018/04/13
1.3K0
【论文推荐】最新5篇行人重识别( Person Re-ID)相关论文—样本生成、超越人类、实践指南、姿态归一化、图像生成
【论文推荐】最新七篇行人再识别相关论文—深度排序、风格自适应、对抗、重排序、多层次相似性、深度空间特征重构、图对应迁移
【导读】既昨天推出六篇行人再识别文章,专知内容组今天又推出最近七篇行人再识别(Person Re-Identification)相关文章,为大家进行介绍,欢迎查看! 1. MaskReID: A Mask Based Deep Ranking Neural Network for Person Re-identification(用于行人再识别的一种基于深度排序的神经网络) 作者:Lei Qi,Jing Huo,Lei Wang,Yinghuan Shi,Yang Gao 机构:Nanjing Univer
WZEARW
2018/04/16
1.5K0
【论文推荐】最新七篇行人再识别相关论文—深度排序、风格自适应、对抗、重排序、多层次相似性、深度空间特征重构、图对应迁移
从人脸识别到行人重识别,下一个风口
人脸识别在LFW超越人的识别能力之后,就很少有重大的突破了,逐渐转向视频中人脸识别或人脸属性学习等方向。CV顶级会议的接受论文量也出现了逐渐平稳的趋势。 而行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。 给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合 ,可广泛应用于智能视频监控、智能安保等领域。 行人重识
计算机视觉研究院
2018/04/17
2.6K0
从人脸识别到行人重识别,下一个风口
ECCV 2020 论文大盘点-人员重识别(ReID)篇
本文盘点ECCV 2020 中所有与人员再识别(Person Re-Identification,ReID)相关的论文,总计 24 篇,其中两篇Oral 论文,15篇已经或者将开源代码。
CV君
2020/09/29
1.4K0
ECCV 2020 论文大盘点-人员重识别(ReID)篇
NVIDIA开源DG-Net:用GAN做“淘宝式”换衣,辅助行人重识别
前几天英伟达开源了DG-Net的源码。让我们来回顾一下这篇CVPR19 Oral的论文。
郑哲东
2019/07/25
2.9K0
NVIDIA开源DG-Net:用GAN做“淘宝式”换衣,辅助行人重识别
【论文推荐】最新5篇行人再识别(ReID)相关论文—迁移学习、特征集成、重排序、 多通道金字塔、深层生成模型
【导读】专知内容组整理了最近五篇行人再识别(Person Re-identification)相关文章,为大家进行介绍,欢迎查看! 1.Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns(基于迁移学习时空模式的无监督跨数据集的行人再识别) ---- 作者:Jianming Lv,Weihang Chen,Qing Li,Can Yang 机构:South C
WZEARW
2018/04/08
1.7K0
【论文推荐】最新5篇行人再识别(ReID)相关论文—迁移学习、特征集成、重排序、 多通道金字塔、深层生成模型
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第七篇专知主题荟萃-自动文摘Automatic Summarization知识资料大全集荟萃 (入门/进阶/论文/课程/会议/
WZEARW
2018/04/10
2.9K0
[计算机论文速递] 2018-04-11
PS:Amusi前几天在忙其它事,论文速递耽搁了近一个星期,还请大家见谅。因为时间因素,和往常一样,每篇paper不附带相应的图示。如果本文中出现明显重大的翻译问题,还请大家指出,谢谢
Amusi
2018/04/14
7180
[计算机论文速递] 2018-04-11
学界 | 如何用未标注样本解决单标注样本下的视频行人重识别问题?
本文作者为悉尼科技大学博士生武宇(Yu Wu),他根据 CVPR 2018 录用论文 Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning 为 AI 科技评论撰写了独家解读稿件。
AI科技评论
2018/07/27
1K0
学界 | 如何用未标注样本解决单标注样本下的视频行人重识别问题?
CVPR 2022 人员重识别方向 论文推荐 ~ 总计9篇,无监督、防换装、抗遮挡!
作为视频监控领域的核心技术,ReID 目前正向着无监督学习、抗遮挡、防换装、大规模预训练、训练样本生成等方向发展。
CV君
2022/06/10
5150
CVPR 2022 人员重识别方向 论文推荐 ~ 总计9篇,无监督、防换装、抗遮挡!
CVPR 2020 论文大盘点-行人检测与重识别篇
行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。
CV君
2020/06/19
2.1K0
【专知荟萃19】图像识别Image Recognition知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
图像识别 Image Recognition 专知荟萃 入门学习 进阶文章 Imagenet result 2013 2014 2015 2016 2017 综述 Tutorial 视频教程 Datasets 代码 领域专家 入门学习 如何识别图像边缘? 阮一峰 [http://www.ruanyifeng.com/blog/2016/07/edge-recognition.html] CS231n课程笔记翻译:图像分类笔记 [https://zhuanlan.zhihu.com/p/20894041]
WZEARW
2018/04/10
1.4K0
全球最全计算机视觉资料(4:分割和识别)
目标检测和深度学习 Segmentation Alexander Kolesnikov, Christoph Lampert, Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation, ECCV, 2016. [http://pub.ist.ac.at/~akolesnikov/files/ECCV2016/main.pdf] [https://github.com/kolesman/SEC]
朱晓霞
2018/07/20
4310
2021年 行人重识别的挑战 与 最新进展 (35页PPT整理)
行人重识别近几年获得了在测试结果上的大幅提升,甚至超过了人的分辨能力,但是我们在实际应用上仍有很多待解决的问题。在本文中,我们take a step back, 提出了一些问题和潜在的解决方案,主要以我们reler组的尝试为主,包括大家比较熟知的 PCB / HHL/ PUL/ SPGAN/ DG-Net等工作,抛砖引玉。 希望能为未来这个领域的发展提供一些新的视野。
郑哲东
2021/03/09
1.7K0
【专知荟萃25】文字识别OCR知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)
OCR文字,车牌,验证码识别 专知荟萃 入门学习 论文及代码 文字识别 文字检测 验证码破解 手写体识别 车牌识别 实战项目 视频 入门学习 端到端的OCR:基于CNN的实现 blog: [http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/] 如何用卷积神经网络CNN识别手写数字集? blog: [http://www.cnblogs.com/charlotte77/p/5671136.html] OCR文字识别用的是什么算法? [https://www.zh
WZEARW
2018/04/11
4.2K0
ICCV 2019 | 北邮提出高阶注意力模型,大幅改进行人重识别SOTA精度
今天跟大家分享一份ICCV 2019 上新出的关于注意力模型的工作Mixed High-Order Attention Network for Person Re-Identification,来自北京邮电大学的学者提出一种高阶注意力模型,并将其应用于行人重识别建模,显著改进了现有SOTA模型的精度。
CV君
2019/12/27
1.5K0
【论文推荐】最新6篇行人重识别相关论文—深度空间特征重构、生成对抗网络、图像生成、系列实战、图像-图像域自适应方法、行人检索
【导读】专知内容组整理了最近六篇行人重识别(Person Re-identification)相关文章,为大家进行介绍,欢迎查看! 1. Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach(基于深度空间特征重构的部分行人重识别:对齐无关方法) ---- ---- 作者:Lingxiao He,Jian Liang,Haiqing Li,Zhenan Sun 摘要:P
WZEARW
2018/04/13
1.5K0
【论文推荐】最新6篇行人重识别相关论文—深度空间特征重构、生成对抗网络、图像生成、系列实战、图像-图像域自适应方法、行人检索
推荐阅读
深度 | 用于大规模行人重识别的行人对齐网络
1.8K0
【论文推荐】最新六篇行人再识别相关论文—特定视角、多目标、双注意匹配网络、联合属性-身份、迁移学习、多通道金字塔型
2.3K0
【论文推荐】最新六篇行人再识别(ReID)相关论文—和谐注意力网络、时序残差学习、评估和基准、图像生成、三元组、对抗属性-图像
1.8K0
【论文推荐】最新5篇行人重识别( Person Re-ID)相关论文—样本生成、超越人类、实践指南、姿态归一化、图像生成
1.3K0
【论文推荐】最新七篇行人再识别相关论文—深度排序、风格自适应、对抗、重排序、多层次相似性、深度空间特征重构、图对应迁移
1.5K0
从人脸识别到行人重识别,下一个风口
2.6K0
ECCV 2020 论文大盘点-人员重识别(ReID)篇
1.4K0
NVIDIA开源DG-Net:用GAN做“淘宝式”换衣,辅助行人重识别
2.9K0
【论文推荐】最新5篇行人再识别(ReID)相关论文—迁移学习、特征集成、重排序、 多通道金字塔、深层生成模型
1.7K0
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
2.9K0
[计算机论文速递] 2018-04-11
7180
学界 | 如何用未标注样本解决单标注样本下的视频行人重识别问题?
1K0
CVPR 2022 人员重识别方向 论文推荐 ~ 总计9篇,无监督、防换装、抗遮挡!
5150
CVPR 2020 论文大盘点-行人检测与重识别篇
2.1K0
【专知荟萃19】图像识别Image Recognition知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
1.4K0
全球最全计算机视觉资料(4:分割和识别)
4310
2021年 行人重识别的挑战 与 最新进展 (35页PPT整理)
1.7K0
【专知荟萃25】文字识别OCR知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)
4.2K0
ICCV 2019 | 北邮提出高阶注意力模型,大幅改进行人重识别SOTA精度
1.5K0
【论文推荐】最新6篇行人重识别相关论文—深度空间特征重构、生成对抗网络、图像生成、系列实战、图像-图像域自适应方法、行人检索
1.5K0
相关推荐
深度 | 用于大规模行人重识别的行人对齐网络
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档