前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习入门实战(二)

深度学习入门实战(二)

作者头像
MelonTeam
发布2018-01-04 17:16:51
8410
发布2018-01-04 17:16:51
举报
文章被收录于专栏:MelonTeam专栏

导语:上一篇文章我们介绍了MxNet的安装,但MxNet有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下TensorFlow,这个由谷歌爸爸出品的深度学习框架,文档比较全~以后的我们也都使用这个框架~

0x00 概要

TensorFlow是谷歌爸爸出的一个开源机器学习框架,目前已被广泛应用,谷歌爸爸出品即使性能不是最强的(其实性能也不错),但绝对是用起来最方便的,毕竟谷歌有Jeff Dean坐镇,这波稳。

0x01 TensorFlow安装

官方有一个Mac上TensorFlow的安装指南,点这里 我们现在就照着这个安装指南操作一把,官方推荐在virtualenv中安装TF,我们就在virtualenv安装吧,大家也可以直接安装。前几天TF发布1.0版了,我们就安装1.0版吧~

1.先安装下pip和six

代码语言:javascript
复制
$ sudo easy_install --upgrade pip
$ sudo easy_install --upgrade six 

2.安装下virtualenv

代码语言:javascript
复制
$ sudo pip install --upgrade virtualenv

3.接下来, 建立一个全新的 virtualenv 环境。这里将环境建在 ~/tensorflow目录下, 执行:

代码语言:javascript
复制
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow

4.然后, 激活 virtualenv:

代码语言:javascript
复制
$ source bin/activate  # 如果使用 bash
$ source bin/activate.csh  # 如果使用 csh

(tensorflow)$ # 终端提示符应该发生变化 如果要退出虚拟环境可以执行

代码语言:javascript
复制
(tensorflow)$ deactivate

也可以直接在shell里执行下面的代码激活

代码语言:javascript
复制
source ~/tensorflow/bin/activate

5.在 virtualenv 内, 安装 TensorFlow: 因为我用的是Python 2.x所以执行

代码语言:javascript
复制
$ sudo pip install --upgrade  https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0-py2-none-any.whl

要是使用Python3可以执行

代码语言:javascript
复制
 $ pip3 install --upgrade https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0-py3-none-any.whl

当然也可以执行下面这个命令直接安装最新版

代码语言:javascript
复制
pip install --upgrade tensorflow

等命令执行完TF就安装好了

安装完成后可以在python中执行以下代码

代码语言:javascript
复制
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

如果输出 Hello, TensorFlow! 就说明安装成功啦 PS:运行脚本的时候会提示不支持SSE xxx指令集的提示,这是因为我们是通过pip直接安装的编译好的版本导致的,如果想针对机器优化,可以直接从GitHub上的源代码编译安装。但这样会复杂些,而且我觉得其实提升不大,用CPU都很慢。。。不如直接上GPU性能提升快 PS2:如果想安装GPU版会复杂些,首先要有一块支持CUDA的N卡,再安装CUDA驱动啥的,各位看官可以谷歌一下查询相关资料。如果不想搜索,也可以看本系列后续文章,以后也会介绍如何在Mac下安装GPU版。

0x02 TensorFlow基本使用

在介绍样例之前,我们先介绍一下TensorFlow的一些基本概念

1.placehoder(占位符)

tf.placeholder(dtype, shape=None, name=None) Args:     dtype: The type of elements in the tensor to be fed.     shape: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any shape.     name: A name for the operation (optional).

dytpe:占位符的数据类型 shape:占位符的纬度,例如[2,2]代表2x2的二维矩阵,None可以代表任意维度,例如[None,2]则代表任意行数,2列的二维矩阵 name:占位符的名字

变量在定义时要初始化,但可能有些变量我们一开始定义的时候并不一定知道该变量的值,只有当真正开始运行程序的时候才由外部输入,比如我们需要训练的数据,所以就用占位符来占个位置,告诉TensorFlow,等到真正运行的时候再通过输入数据赋值。 例如

代码语言:javascript
复制
x = tf.placeholder(tf.float32, [2, 2])

就是生成了一个2x2的二维矩阵,矩阵中每个元素的类型都是tf.float32(也就是浮点型) 有时候定义需要训练的参数时候,会定义一个[input_size,output_size]大小的矩阵,其中input_size数输入数据的维度,output_size是输出数据的维度

2.Variable(变量)

官方说明 有些长,我就不引用啦,这里介绍一个简单的用法,有一点变量在声明的时候要有一个初始值

代码语言:javascript
复制
x = tf.Variable(tf.zeros([2,2])) # 声明一个2x2的矩阵,并将矩阵中的所有元素的值赋为0,默认每个元素都是tf.float32类型的数据
y = tf.Variable(1.0, tf.float32) # 声明一个tf.float32的变量,并将初始值设为1.0

我们一般还需要运行下global_variables_initializer真正在TensorFlow的Session中初始化所有变量,后面的样例中也会有体现。

3.Constant(常量)

官方说明 同样不引用啦,这里介绍一个简单的用法

代码语言:javascript
复制
x = tf.constant(3.0, tf.float32) # 定义一个值为3.0的浮点型常量

4.Session(会话)

TensorFlow所有的操作都必须在Session中运行,才能真正起作用,可以将Session当作TensorFlow运行的环境,Session运行完需要close~

代码语言:javascript
复制
#用close()关闭
sess = tf.Session()
sess.run(...)
sess.close()

#使用with..as..语句关闭
with tf.Session() as sess:
    sess.run(...)

5.简单使用

我们介绍下3+5应该如何在TensorFlow中实现

代码语言:javascript
复制
import tensorflow as tf

x = tf.Variable(3, tf.int16) // 声明一个整型变量3
y = tf.Variable(5, tf.int16) // 声明一个整型变量5
z = tf.add(x,y) // z = x + y
init = tf.global_variables_initializer() // 初始化变量的操作
with tf.Session() as sess:
    sess.run(init)  // 在Session中初始化变量
    print(sess.run(z)) // 输出计算出的z值

0x03 样例

Github上有一个比较好的Demo合集,有注释有源代码还蛮好的,但今天我们不讲上面的代码,我们讲如何用TF实现线性回归模型 所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型。 我们如果想通过深度学习拟合一条直线 y = 3 * x 应该怎么做呢?咱不讲虚的先展示下代码!然后我们在逐步分析。

代码语言:javascript
复制
#coding=utf-8
import tensorflow as tf

x = tf.placeholder(tf.float32)
W = tf.Variable(tf.zeros([1]))
b = tf.Variable(tf.zeros([1]))
y_ = tf.placeholder(tf.float32)

y = W * x + b

lost = tf.reduce_mean(tf.square(y_-y))
optimizer = tf.train.GradientDescentOptimizer(0.0000001)
train_step = optimizer.minimize(lost)

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

steps = 1000
for i in range(steps):
    xs = [i]
    ys = [3 * i]
    feed = { x: xs, y_: ys }
    sess.run(train_step, feed_dict=feed)
    if i % 100 == 0 :
        print("After %d iteration:" % i)
        print("W: %f" % sess.run(W))
        print("b: %f" % sess.run(b))
        print("lost: %f" % sess.run(lost, feed_dict=feed))

1.先导入需要使用的python库

代码语言:javascript
复制
#coding=utf-8
import tensorflow as tf

毕竟是基于TensorFlow的,那我们肯定要导入TensorFlow滴,导入之后取个别名tf,之后用起来方便些。

2.定义需要的变量,我们看看y = W * x + b中都有哪些变量

代码语言:javascript
复制
x = tf.placeholder(tf.float32)
W = tf.Variable(tf.zeros([1]))
b = tf.Variable(tf.zeros([1]))
y_ = tf.placeholder(tf.float32)

x:我们训练时需要输入的真实数据x W: 我们需要训练的W,这里我们定义了一个1维的变量(其实吧,就是一个普普通通的数,直接用tf.float32也行)并将其初值赋为0 b : 我们需要训练的b,定义一个1维变量,并将其初值赋为0 y_ :我们训练时需要输入的x对应的y

3.定义线性模型

代码语言:javascript
复制
y = W * x + b

4.定义损失函数和优化方法

代码语言:javascript
复制
lost = tf.reduce_mean(tf.square(y_-y))
optimizer = tf.train.GradientDescentOptimizer(0.0000001)
train_step = optimizer.minimize(lost)
lost = tf.reduce_mean(tf.square(y_- y))

损失函数(Lost Function)是用来评估我们预测的值和真实的值之间的差距是多少,损失函数有很多种写法,我们这里使用(y预测-y真实)^2再取平均数来作为我们的损失函数(用这个函数是有原因的,因为我们用的是梯度下降法进行学习)损失函数的值越小越好,有些教程也叫Cost Function

代码语言:javascript
复制
optimizer = tf.train.GradientDescentOptimizer(0.0000001)

优化函数代表我们要通过什么方式去优化我们需要学习的值,这个例子里指的是W和b,优化函数的种类有很多,大家到官网查阅, 平时我们用的比较多的是GradientDescentOptimizer和AdamOptimizer等,这里我们选用最常用也是最最基本的GradientDescentOptimizer(梯度下降),后面传入的值是学习效率。一般是一个小于1的数。越小收敛越慢,但并不是越大收敛越快哈,取值太大甚至可能不收敛了。。。 我们简单介绍下什么是梯度下降,梯度顾名思义就是函数某一点的导数,也就是该点的变化率。梯度下降则顾名思义就是沿梯度下降的方向求解极小值。 详细解释大家可以自行谷歌一下~当然可以可以看这篇文章,当然由于性能的原因梯度下降有很多种变种,例如随机梯度下降 (Stochastic Gradient Descent),小批梯度下降 (Mini-Batch Gradient Descent)。本文样例采用的是SGD,每次只输入一个数据。

代码语言:javascript
复制
train_step = optimizer.minimize(lost)

这个代表我们每次训练迭代的目的,本例我们的目的就是尽量减小lost的值,也就是让损失函数的值尽量变小

5.变量初始化

代码语言:javascript
复制
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

这个之前有所介绍了,我们需要在Session中真正运行下global_variables_initializer才会真正初始化变量

6.开始训练

代码语言:javascript
复制
steps = 1000
for i in range(steps):
    xs = [i]
    ys = [3 * i]
    feed = { x: xs, y_: ys }
    sess.run(train_step, feed_dict=feed)
    if i % 100 == 0 :
        print("After %d iteration:" % i)
        print("W: %f" % sess.run(W))
        print("b: %f" % sess.run(b))
        print("lost: %f" % sess.run(lost, feed_dict=feed))

我们定义一个训练迭代次数1000次 这里我们图方便,每次迭代都直接将i作为x,3*i作为y直接当成训练数据。 我们所有通过placeholder定义的值,在训练时我们都需要通过feed_dict来传入数据。 然后我们每隔100次迭代,输出一次训练结果,看看效果如何~

代码语言:javascript
复制
After 0 iteration:
W: 0.000000
b: 0.000000
lost: 0.000000
After 100 iteration:
W: 0.196407
b: 0.002951
lost: 78599.671875
After 200 iteration:
W: 1.249361
b: 0.009867
lost: 122582.625000
After 300 iteration:
W: 2.513344
b: 0.015055
lost: 21310.636719
After 400 iteration:
W: 2.960238
b: 0.016392
lost: 252.449890
After 500 iteration:
W: 2.999347
b: 0.016484
lost: 0.096061
After 600 iteration:
W: 2.999971
b: 0.016485
lost: 0.000001
After 700 iteration:
W: 2.999975
b: 0.016485
lost: 0.000001
After 800 iteration:
W: 2.999978
b: 0.016485
lost: 0.000001
After 900 iteration:
W: 2.999981
b: 0.016485
lost: 0.000000

可以看到在迭代了500次之后效果就很好了,w已经达到2.999347很接近3了,b也达到了0.016484也比较接近0了,因为这里学习率选择的比较小,所以收敛的比较慢,各位也可以尝试调大学习率,看看收敛的速度有何变化。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-03-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0x00 概要
  • 0x01 TensorFlow安装
  • 0x02 TensorFlow基本使用
    • 1.placehoder(占位符)
      • 2.Variable(变量)
        • 3.Constant(常量)
          • 4.Session(会话)
            • 5.简单使用
            • 0x03 样例
            相关产品与服务
            GPU 云服务器
            GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档