Loading [MathJax]/jax/input/TeX/jax.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >生成模型和判别模型

生成模型和判别模型

作者头像
zeekling
发布于 2022-06-17 08:39:15
发布于 2022-06-17 08:39:15
7760
举报

生成方法和判别方法

监督学习方法又分生成方法(Generative approach)和判别方法(Discriminative approach),所学到的模型分别称为生成模型(Generative Model)和判别模型(Discriminative Model)

判别方法

由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。

判别方法的特点:

  • 判别方法寻找不同类别之间的最优分类面,反映的是异类数据之间的差异;
  • 判别方法利用了训练数据的类别标识信息,直接学习的是条件概率P(Y|X)或者决策函数f(X),直接面对预测,往往学习的准确率更高;
  • 由于直接学习条件概率P(Y|X)或者决策函数f(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
  • 缺点是不能反映训练数据本身的特性

生成方法

由数据学习联合概率密度分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:

基本思想是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类. 这样的方法之所以成为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。用于随机生成的观察值建模,特别是在给定某些隐藏参数情况下。典型的生成模型有:朴素贝叶斯法、马尔科夫模型、高斯混合模型。这种方法一般建立在统计学和Bayes理论的基础之上。

生成方法的特点:

  • 从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度;
  • 生成方法还原出联合概率分布,而判别方法不能;
  • 生成方法的学习收敛速度更快、即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;
  • 当存在隐变量时,扔可以用生成方法学习,此时判别方法不能用
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019.09.05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
判别模型与生成模型
监督学习方法可以分为生成方法(generative approach)和判别方法(discriminative approach),所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model)。
Coggle数据科学
2019/08/29
1.1K0
判别模型 和 生成模型
【摘要】 - 生成模型:无穷样本==》概率密度模型 = 产生模型==》预测 - 判别模型:有限样本==》判别函数 = 预测模型==》预测 【简介】 简单的说,假设o是观察值,q是模型。 如果对P(o|q)建模,就是Generative模型。其基本思想是首先建立样本的概率密度模型,再利用模型进行推理预测。要求已知样本无穷或尽可能的大限制。 这种方法一般建立在统计力学和bayes理论的基础之上。 如果对条件概率(后验概率) P(q|o)建模,就是Discrminative模型。基本思想是有限
机器学习AI算法工程
2018/03/12
1.1K0
生成模型&判别模型
在机器学习中,对于有监督学习可以将其分为两类模型:判别式模型和生成式模型。简单地说,判别式模型是针对条件分布建模,而生成式模型则针对联合分布进行建模。
用户10713522
2023/08/17
4990
理解生成模型与判别模型
我们都知道,对于有监督的机器学习中的分类问题,求解问题的算法可以分为生成模型与判别模型两种类型。但是,究竟什么是生成模型,什么是判别模型?不少书籍和技术文章对这对概念的解释是含糊的。在今天这篇文章中,我们将准确、清晰的解释这一组概念。
SIGAI学习与实践平台
2018/10/18
1.1K0
理解生成模型与判别模型
判别模型和生成模型
原文链接:https://www.jianshu.com/p/e57aabf32c18
用户1332428
2018/07/30
6400
生成式模型 vs 判别式模型
生成式模型和判别式模型的概念是机器学习领域非常重要的基础知识,但能准确区分开二者并不是一件非常容易的事情,笔者经常是看一遍忘一遍,为了巩固下知识点,我将从以下几个方面对两种模型进行介绍和对比。
Datawhale
2019/11/27
4.6K0
理解生成模型与判别模型
我们都知道,对于有监督的机器学习中的分类问题,求解问题的算法可以分为生成模型与判别模型两种类型。但是,究竟什么是生成模型,什么是判别模型?不少书籍和技术文章对这对概念的解释是含糊的。在今天这篇文章中,我们将准确、清晰的解释这一组概念。
SIGAI学习与实践平台
2018/10/10
1.1K0
理解生成模型与判别模型
优秀的你,正在拼搏没?
0.说在前面1.生成式对抗网络前奏2.基本思想3.生成模型与判别模型4.生成式对抗网络5.基本原理
公众号guangcity
2019/09/20
4260
优秀的你,正在拼搏没?
模型分类之生成模型与鉴别模型
https://www.cnblogs.com/lifegoesonitself/p/3437747.html
数据万花筒
2020/12/30
1.8K0
模型分类之生成模型与鉴别模型
NLP系列学习:生成型模型和判别型模型
在学习机器学习的过程中我们总会遇见一些模型,而其中的一些模型其实可以归类于生成模型或者是判别模型中去,而这一篇文章我将会简单的概述下我最近所遇到的一些模型,并且按照自己的理解去记录下来,其中肯定会有差
云时之间
2018/04/11
8550
NLP系列学习:生成型模型和判别型模型
『数据挖掘十大算法 』笔记三:K-means
C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART
百川AI
2021/10/19
5990
数据挖掘面试题之:生成模型 VS 判别模型
最近,milter在进行算法工程师的面试,发现面试官特别钟爱生成模型和判别模型相关的问题,为了能够和面试官谈笑风生,milter精心整理了面试官可能问到的相关问题。
木东居士
2019/07/23
7020
数据挖掘面试题之:生成模型 VS 判别模型
AI: 判别模型与生成模型两大核心技术解析
判别模型和生成模型是机器学习中两大重要的模型类别,它们在数据处理和预测方面有不同的应用和特点。以下是对这两种模型的详细讲解。
运维开发王义杰
2024/07/10
7010
AI: 判别模型与生成模型两大核心技术解析
PRML笔记
其中,除以NN让我们能够以相同的基础对比不同大小的数据集,平方根确保了ERMSE_{RMS}与目标变量tt使用相同的规模和单位进行度量。
李智
2018/08/03
5670
【生成模型】关于无监督生成模型,你必须知道的基础
大家好,小米粥销声匿迹了很长一段时间,今天又杀回来啦!这次主要是介绍下生成模型的相关内容,尤其是除了GAN之外的其他生成模型,另外应部分读者要求,本系列内容增添了代码讲解,希望能使大家获益,更希望大家多多指正错误、多提宝贵意见。
用户1508658
2020/11/11
1.8K0
【生成模型】关于无监督生成模型,你必须知道的基础
机器学习16:逻辑回归模型
逻辑回归模型是对线性回归模型解决分类任务的改进,是广义线性模型。它可以被看做是Sigmoid函数(logistic方程)所归一化后的线性回归模型,主要用于二分类问题。Sigmoid函数形式为:
用户5473628
2019/08/08
1.2K0
机器学习16:逻辑回归模型
朴素贝叶斯 朴素贝叶斯原理
由于这一假设,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。
小小程序员
2023/12/09
4070
朴素贝叶斯 朴素贝叶斯原理
判别模型、生成模型与朴素贝叶斯方法
1、判别模型与生成模型 回归模型其实是判别模型,也就是根据特征值来求结果的概率。形式化表示为 ,在参数 确定的情况下,求解条件概率 。通俗的解释为在给定特征后预测结果出现的概率。 比如说要确定一
机器学习AI算法工程
2018/03/12
1.3K0
判别模型、生成模型与朴素贝叶斯方法
判别式模型(discriminative model)和生成模型(generative model)判别模型生成模型相关阅读
已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。 判别模型 常见的判别模型有线性回归(Linear Regression),逻辑回归(Logistic Regression),支持向量机(SVM), 传统神经网络(Traditional Neural Networks),线性判别分析(Linear Disc
致Great
2018/07/04
1.1K0
GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)
我对GAN“生成对抗网络”(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学【机器学习与视觉实验室】负责人冯佳时博士在【硬创公开课】的
悟乙己
2019/05/27
1.8K0
相关推荐
判别模型与生成模型
更多 >
交个朋友
加入HAI高性能应用服务器交流群
探索HAI应用新境界 共享实践心得
加入[游戏服务器] 腾讯云官方交流站
游戏服运维小技巧 常见问题齐排查
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档