Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >深度丨女主播的“逆天”美颜原来是靠这些 AI 技术实现的

深度丨女主播的“逆天”美颜原来是靠这些 AI 技术实现的

作者头像
AI科技评论
发布于 2018-03-08 09:51:53
发布于 2018-03-08 09:51:53
3.3K0
举报
文章被收录于专栏:AI科技评论AI科技评论

雷锋网按:本文内容来自涂图 CTO 邱彦林在硬创公开课的分享,在未改变原意的基础上进行了编辑整理。

几年前图片美颜教育了市场,到了直播时代,美颜同样成为直播平台的标配。女主播要是在直播中不能自动美颜,那只能靠更精致的妆容来补,而实时直播美颜技术恰好解决了这个问题。

目前最新的美颜技术已经发展到了 2.0 阶段,打个比方,如果美颜 1.0 只是化妆(磨皮、祛痘、肤色调整)的话,美颜 2.0 基本就能达到整容的效果——把眼睛变大,把圆脸变成瓜子脸。而实现这一效果的基础就是人脸识别

硬创公开课特邀专攻直播美颜的涂图 CTO 邱彦林为大家讲述 《解密 AI 在直播美颜中起到哪些你看不到的作用》。

邱彦林:涂图 CTO,专注于图像技术,以及机器学习图像处理中的实际应用。国内最早一批 Flash 开发人员,曾出版 2 本 Flash 中文技术书籍,擅长程序架构设计。

美颜中最常见的祛痘、磨皮技术原理是什么样的?

从图像处理的角度看,什么是“痘”和“斑”?

一张图像可以看作是一个二维的数据集合,其中每个元素都是一个像素点。如果将这些数据用几何的方式来呈现出来,“痘”就是和周围点差异较大的点。在图像处理领域,这个差异是通过灰度值来衡量的灰度,也叫“亮度”。灰度图,也就是黑白图。将彩色图转换为灰度图,图像的关键特征不会丢失。

事实上,人的眼睛在观察物体时,首先注意的是物体的边缘。而在一张图像里面,边缘,即与周边灰度差异较大的点。类似的,“痘”也是与周边点的灰度差异较大的点。相比色彩,人的眼睛对灰度更敏感。这也是为什么对视频进行压缩的时候,会偏向于丢弃色彩部分的数据,而尽量保留亮度数据。

磨皮祛痘,就是要平滑点与点之间的灰度差异,同时还要保持皮肤原有的一些细节。所以,美颜一般选择边界保持类平滑滤波算法。

直播美颜(动态)和图片美颜(静态)的区别在哪里?动态美颜要解决哪些技术难题?

最重要的区别在于:直播美颜要求实时处理,而静态的图像处理对实时性没有要求,比如最近比较火的 Prisma,大家会发现处理一张图像的速度可能需要 1~2 分钟,甚至更长。

直播的实时性,最直接的体现就是在很短的时间内,完成系列任务。所以直播中的美颜,对性能有很高的要求,无法使用特别复杂的算法。我们只能在算法和美颜效果之间找个平衡点。

图片处理应用中,没有实时性的要求,所以对算法没有什么限制。只要能实现好的效果,再复杂的算法也可以用。

在第一个问题中,我也提到了边界保持类平滑滤波算法。这类算法有很多种,但在直播中一般均选择双边滤波算法。这个算法性能高,效果也比较好,非常适合直播场景。除了磨皮算法外,调整皮肤肤色也是美颜的一个关键环节。关于调整肤色:一方面实现美白、红润的效果;另一方面则通过控制肤色,可以弱化“痘”和“斑”等,因为磨皮算法只能在一定程度上消除噪点。调整肤色个环节,还能够让设计人员参与进来,来设计出更符合我们审美观的效果来。

如何解决美颜后画面像素变差的问题,可通过什什么办法在保证美颜效果和画质之间的平衡?

从技术上讲,美颜和画质没有关系。直播的画质由主播端的输出码率决定,码率越高,画质越好,反之越差。 一般来说,在直播应用中,主播端输出的码率是固定的,或者说限制在一定范围内。如果网络情况好,输出的码率高,反之则低。目前主流的直播平台都采用 RTMP 协议,采用其它技术比如 webRTC。此外直播画质和直播平台的稳定性也有一定关系。

如何实现直播时添加脸部贴图,甚至实时整容:如把眼睛变大,把圆脸变成瓜子脸?

这类效果的核心是人脸识别技术。在直播时,从相机采集到每一帧的画面,然后进行人脸识别,再标示出关键点的位置,结合图像技术得到最终的效果。

我先深入讲下人脸识别,目前在人脸识别领域可分为机器学习与深度学习两类方案。

机器学习方案:

机器学习识别物体是基于像素特征的我们会搜集大量的图像素材,再选择一个算法,使用这个算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

深度学习方案:

深度学习与机器学习不同的是,它模拟我们人类自己去识别人脸的思路。比如,神经学家发现了我们人类在认识一个东西、观察一个东西的时候,边缘检测类的神经元先反应比较大,也就是说我们看物体的时候永远都是先观察到边缘。就这样,经过科学家大量的观察与实验,总结出人眼识别的核心模式是基于特殊层级的抓取,从一个简单的层级到一个复杂的层级,这个层级的转变是有一个抽象迭代的过程的。

深度学习就模拟了我们人类去观测物体这样一种方式,首先拿到海量数据,拿到以后才有海量样本做训练,抓取到核心的特征建立一个网络。因为深度学习就是建立一个多层的神经网络。有些简单的算法可能只有四五层,但是有些复杂的,谷歌里面有一百多层,不同的层负责不同的处理方式,如磁化层等等。

当然这其中每一层有时候会去做一些数学计算,有的层会做图象预算,一般随着层级往下,特征会越来越抽象。比如我们人认识一个东西,我们可能先把桌子的几个边缘抓过来,结果每个边缘和轮廓组成的可能性都很多。基于轮廓的组成,我们可把这个桌子抽象成几层,可能第一层是这里有个什么线,然后逐渐往下抽象程度会由点到线到面,或者到更多的面等等这样的过程。这是一个抽象的过程。

机器学习方案和深度学习方案的区别:

而这两种“学习”的区别,举个例子来说:比如要识别具体环境中的人脸,如果遇到云雾,或者被树遮挡一部分,人脸就变得残缺与模糊,那基于像素的像素特征的机器学习就无法辨认了。它太僵化,太容易受环境条件的干扰。

而深度学习则将所有元素都打碎,然后用神经元进行“检查”:人脸的五官特征、人脸的典型尺寸等等。最后,神经网络会根据各种因素以及各种元素的权重,给出一个经过深思熟虑的猜测,即这个图像有多大可能是张人脸。

移动平台上用深度学习替换机器学习算法

具体到应用层面,在移动设备上,采用机器学习进行人脸识别,是目前的主流做法。将深度学习迁移到移动设备上,这算是时下的研究热点深度学习的效果很好,但是前提是建立在大量的计算基础上。虽然现在的手机硬件性能已经很好,但如果要运行深度学习的模型,手机的电量会是个问题。

据我了解,目前已经有一些公司已经成功在手机上实现了低能耗的深度学习算法。目前我们也在做相关研究,在移动平台上用深度学习替换机器学习算法。

再回到直播中的给人脸实时贴图或者“整容”,实现这一效果主要应用我上面提到的人脸识别技术,检测并识别出人脸的关键点再进行图像处理即可。

改变眼睛和脸型涉及到美丑的问题,如何让计算机懂得“审美”?

改变眼睛与脸型这类美颜,因为要涉及到人脸识别的问题,就像我刚才说的原理,非常复杂,对计算量的要求也非常大。

目前这类美颜一般都是基于机器学习的,参数在编写程序时已经确定好,并没有计算机“自己”调整的过程所以,目前的美颜的“美”,都是我们人为的来控制。当然,这个人为也不是说程序员自己可以随便编,而是要与美工人员共同参与来完成的。

举例来说:在一些比较专业的图象处理论坛里面,有设计师会发一些经过处理的美女图片来。一般是发张原图,发张经过处理之后出来一个效果图,原图跟效果图之间有个差异,我们可以通过技术手段得到这个差异。然后把这个差异应用在我们做美肤里面去,这就是调整肤色的做法。

图片跟图片之间可以通过一些手法去模拟到这个效果,这中间的过程都是可以计算出来的。然后在滤镜、PS,或者是图象处理里的一项技术,去控制一张图片的颜色表现。通过把技术人员跟美工人员结合起来,技术只管技术,美工只管美工,这样就能够开发与设计结合起来,实现所谓的“美”。

所以你看很多平台算法都大同小异,但是为什么最终出来的美颜效果让人感觉还是有差异,其实就是说里面有很多细节在,需要花时间优化,特别是用户的需求是什么,怎样更漂亮。

未来深度学习的技术更为成熟时,电脑也许就可以凭借海量的数据来总结出美来,进而按这种总结出的“审美”来处理图像。但话说回来,“美”终究还是一种很主观的事,就像之前有人通过大量美女图片合成过各个国家标准的美女脸来,还是很多人觉得不好看,就是这个原因。

直播美颜目前面临最大的技术难题是什么?

暂时没有很大的技术难题,Android 设备适配可以算一个。由于 Android 设备和系统类型较多,导致在 Android 平台上,直播美颜很难做到兼容所有设备。Android 直播,从技术上分为硬编和软编两种方案。

硬编:即采用硬件加速,通过 GPU 进行视频编码。特性是省电、性能好,是目前最佳的方案。但无法支持个别机型。Android 4.3 + 以上的系统才支持这个方案。(这其实不是问题了,现在主流的设备都是 Android 5.0 以上);另一方面,一些厂商在硬件层和软件层做适配时,缺乏相关支持。

软编:通过 CPU 进行视频编码,比较耗电、性能差,但能兼容绝大部分设备。主流的直播平台一般是根据进行来自动适配,保证最佳效果。

群友问答环节

美颜技术如何嵌入在硬件中,如美图手机和卡西欧自拍神器?

美图手机使用的是 Android 系统,在软件层面,和一般的应用开发应该是相似的:也就是开发一款拍照应用,通过调用系统 API 访问相机,采集到画面,然后通过美颜处理。

在 Android 平台一般使用 OpenGL ES 进行图像处理。在 OpenGL ES 中编写算法,实现效果,最后将处理的结果传输给 CPU,然后生成最终的照片。

至于卡西欧自拍神器,据我所知这个应该使用的是厂商自己的系统。我分析整个运行流程和 Android 系统相似。它的效果比较好,除了算法之外,在硬件上应该也有自己独特的处理元件。

动态美颜怎么保证在时序下不同角度的同一人物的美颜效果相同?

这个没法保证。不过,不同角度、不同光照使得人物看起来本来就是不同的效果。

运动物体检测 + 跟踪,然后把人脸部分单独提取出来做美化,这样做对于性能的要求是提高了还是会降低?

一般都没有把人脸单独提取出来做美化,美化是通过肤色检测来确定美颜范围的。运动物体检测 + 跟踪,指的是人脸检测吗?如果是,对性能的要求肯定是提高了。如果要追踪的比较紧,需要每帧都做检测,性能要求肯定是非常高,以毫秒计。

双边滤波的多数实现似乎也无法达到实时性的需求,请问这里有什么 trick 吗?

主要是性能优化吧,比如一般图像卷积处理,是选周围 8 个点,可以减少为 4个。OpenGL ES 脚本按顺序执行,我们需要逐点处理,减少处理的点,这样速度会提上去。GPUImage 开源库里有可参考的代码。

深度学习类算法应用于哪些方面呢?相比传统的基于特征的算法,性能差距至少是两个数量级吧?

深度学习采用的多层神经网络,运算量大,相比传统的机器学习算法,一般来说,差距至少是好几个数量级,这个和网络结构、层级等有直接关系。应用的范围很广,包括图像识别语音识别、翻译、数据挖掘等。

在移动设备上,使用深度学习来实现一些图像识别的功能,这是时下的一个研究热点。前段时间 Caffe 的作者在手机上实现了实时处理视频添加类似 Prisma 的网络结构,使用的是经过优化的 Caffe2 版本。随着手机硬件越来越高,在上面跑多层神经网络逐渐成为可能,甚至是实时处理都已经不是问题。

iOS 9 开始,苹果就提供了深度学习 API ,在 iOS 10,相关 API 得到更新。可以理解为, iPhone 7 以后,进行深度学习的开发,已经逐渐成熟了。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-11-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技评论 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【深度算法】APP直播想实现“逆天”美颜,你只需要一个人脸识别API
几年前图片美颜教育了市场,到了直播时代,美颜同样成为直播平台的标配。女主播要是在直播中不能自动美颜,那只能靠更精致的妆容来补,而实时直播美颜技术恰好解决了这个问题。 目前最新的美颜技术已经发展到了2.
BestSDK
2018/02/27
3.8K0
【深度算法】APP直播想实现“逆天”美颜,你只需要一个人脸识别API
美图AI绘画机器人上线,小姐姐们,新一轮头像可以换起了
李根 假装发自 Amoy 量子位 报道 | 公众号 QbitAI 你是不是也想要一张插画风格的头像?又要像你,又要插画风格、彩绘色系? OK,美图AI绘画机器人Andy上线了。 之前美图专门给Angelababy打造的“插画风格”AI绘画师,现在已升级迭代到最新版本美图秀秀App中。 只要上传一张自拍照,“Andy”就能画出不同风格的插画像,风格达10多种。 其实更早之前,美图还推出过“手绘自拍”的功能,不过相比“Andy”还是弱爆了。 二者区别在于,手绘自拍
量子位
2018/03/23
1.6K0
美图AI绘画机器人上线,小姐姐们,新一轮头像可以换起了
直播APP接入高品质美颜SDK效果的全方位指南
‍‌​​‌‌​‌​‍‌​​​‌‌​​‍‌​​​‌​‌​‍‌​​‌​​‌​‍‌​‌‌​‌‌‌‍‌​​‌‌​‌​‍‌​‌‌​‌​‌‍‌​‌​‌‌​​‍‌​​​‌​​​‍‌​​‌​‌‌​‍‌​‌​‌​‌​‍‌‌​​‌‌‌‌‍‌​​‌​‌​‌‍‌‌​​‌‌‌​‍‌​‌​‌‌​​‍‌​‌‌‌​​​‍‌‌​​‌​​‌‍‌​‌‌​​‌​‍‌​​​‌​‌‌‍‌​​‌​​​‌‍‌​​‌‌‌​​在直播行业竞争日益激烈的今天,美颜功能已成为提升用户体验、增强用户粘性的关键要素。美颜SDK凭借其强大的技术架构和丰富的功能,为开发者提供了一个高效、灵活的解决方案。本文将从美颜SDK的选择、集成、优化到实际应用,全方位解析如何开发一个优秀的美颜直播APP,帮助开发者在实际项目中顺利实现高质量的美颜效果。
澜极美颜SDK
2025/02/19
2270
直播APP接入高品质美颜SDK效果的全方位指南
你今天怎么这么好看——基于深度学习的大型现场实时美颜
美颜是当下直播甚至是所有形式对外展示的一个必备条件。手机端的美颜就像私人化妆师,能够帮助我们实现各种心仪的效果。
LiveVideoStack
2020/03/31
1.5K0
你今天怎么这么好看——基于深度学习的大型现场实时美颜
澜极美颜SDK:打造极致美颜体验的技术秘籍与集成攻略
在当今这个“颜值即正义”的时代,美颜功能已成为各类社交、娱乐应用的标配。而澜极美颜SDK,凭借其卓越的技术实力和高效的集成方案,正成为开发者们打造完美美颜应用的首选利器。本文将深度剖析澜极美颜SDK的开发技术细节与优化策略,同时揭秘其模块化设计与高效集成的秘诀,助力开发者轻松实现自然、流畅的美颜效果,提升产品竞争力。
澜极美颜SDK
2025/01/15
1530
澜极美颜SDK:打造极致美颜体验的技术秘籍与集成攻略
直播平台开发中美颜、滤镜的技术要求
直播平台开发完成采集之后得到原始数据,为了增强一些现场效果或者加上一些额外的效果,我们一般会在将其编码压缩前进行处理,比如打上时间戳或者公司 Logo 的水印,祛斑美颜和声音混淆等处理。在主播和观众连麦场景中,主播需要和某个或者多个观众进行对话,并将对话结果实时分享给其他所有观众,连麦的处理也有部分工作在推流端完成。
布谷安妮
2019/09/24
1.3K0
直播平台开发中美颜、滤镜的技术要求
一站式打造直播美颜APP的高效集成与开发指南
在当今竞争激烈的直播市场中,一款能够快速部署且效果出众的美颜功能是吸引用户的关键。澜极美颜SDK凭借其强大的技术架构和丰富的功能,为开发者提供了一站式的美颜解决方案。本文将从技术架构、选型评估、集成步骤到优化实践,全方位解读如何利用澜极美颜SDK快速打造高质量的直播美颜APP,助力开发者在直播领域脱颖而出。
澜极美颜SDK
2025/01/22
1330
一站式打造直播美颜APP的高效集成与开发指南
2025年直播美颜与滤镜技术的未来趋势
在数字化时代,直播已成为连接人与世界的桥梁,而美颜功能则是这座桥梁上最璀璨的明珠。随着技术的飞速发展,2025年的直播美颜与滤镜技术将迎来前所未有的变革。澜极美颜SDK,作为行业的先行者,将如何以创新技术引领这一变革,为用户提供更加智能、个性化的美颜体验?本文将为您深度剖析澜极美颜SDK的技术演进与未来趋势,带您领略美颜技术的无限魅力。
澜极美颜SDK
2025/01/18
1540
2025年直播美颜与滤镜技术的未来趋势
手机原相机能加美颜特效SDK,实现实时美颜效果吗?
我们常吐槽手机(尤其是苹果)原相机丑,其实并不是原相机丑,是“耿直”,不对拍摄出的图片做出任何修饰,镜头怎么歪就怎么扭曲图像、不能自主实现左右翻转、没有磨皮效果且镜头高清,不给美白并对细节真实还原,照出你的全部缺点。如何解决该问题?给耿直的手机原相机加个美颜特效SDK,一切问题都能迎刃而解。
用户6533225
2019/10/31
2.6K0
AI进了直播间,这画风666
科技时代,我们更加怀念温暖邂逅的时光 这一次IBMWatson为大家带来了Spotify 全球榜 Top 2 的单曲,Watson 学习了 26000 首流行歌曲,帮助主唱Alex Da kid创作了这首《Not Easy》。 全文共2641字,预计阅读时长3分钟 这年头,直播已经不新鲜了,网红们陪聊卖笑,辣眼睛玩心跳,或者博眼球求关注,宛如一股洪流泛滥成灾。 9个机器人组成的首个机器人主播天团 相比之下,(当红炸子鸡TFboys的孪生兄弟)TLboys天团更像是一股网红界的“清流”——由9个机器人组成
企鹅号小编
2018/01/18
2.3K0
AI进了直播间,这画风666
iSee:深度学习“摘眼镜”,用集成数据训练神经网络识别抽象物体
【新智元导读】Saleforce Einstein 的机器学习工程师 Melissa Runfeldt 开发了一款可以摘除眼镜的深度学习应用方法——iSee,效果非常自然。深度学习的应用非常广泛,这个有趣的应用证明集成数据可以用于训练神经网络,识别并去除图像中的抽象物体。 2016 夏季硅谷数据科学大会上,就职于 Saleforce Einstein 的机器学习工程师 Melissa Runfeldt 展出了自己的研究成果,她开发了一款可以摘除眼镜的深度学习应用方法——iSee。 戴眼镜的朋友们应该都不陌生
新智元
2018/03/26
1.9K0
iSee:深度学习“摘眼镜”,用集成数据训练神经网络识别抽象物体
美颜SDK:抖音、微信都在用,10秒大型场景仅100KB!
短视频SDK、直播SDK接入,超低占用空间,十秒大型场景仅100KB+ 精准人脸识别,动态捕捉最优人脸画面 无限炫酷特效,支持Android、IOS系统。
BestSDK
2018/07/30
4.2K0
美颜SDK:抖音、微信都在用,10秒大型场景仅100KB!
Portraiture 5最新版插件PS滤镜
Portraiture 5是一款PS磨皮滤镜,减少了人工选择图像区域的重复劳动。它能智能地对图像中的皮肤材质、头发、眉毛、睫毛等部位进行平滑和减少疵点处理,效果相当优秀;
用户7442547
2022/07/26
4.6K0
从底层技术到直播美颜SDK插件的全流程开发指南
在当今的直播和视频通话应用中,美颜功能已成为提升用户体验的关键要素。澜极美颜SDK凭借其强大的技术架构和丰富的功能,为开发者提供了一个高效、灵活的解决方案。本文将从澜极美颜SDK的底层技术剖析到直播美颜插件的全流程开发,帮助开发者深入了解其技术架构和实现逻辑,确保在实际项目中高效应用。
澜极美颜SDK
2025/02/13
1970
从底层技术到直播美颜SDK插件的全流程开发指南
【杂谈】如果你想快速系统掌握计算机视觉大部分领域,学习人脸图像是唯一选择
笔者是从传统图像算法开始进入计算机视觉行业的,那一批人基本上都是从人脸图像和文本图像开始学,而如今很多计算机视觉从业者却从来没有接触过人脸图像相关的算法,或许真的是时代变了吧。
用户1508658
2020/08/28
1.5K0
【杂谈】如果你想快速系统掌握计算机视觉大部分领域,学习人脸图像是唯一选择
AI魔幻行为大赏:细数机器视觉的9大应用场景
导读:本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
IT阅读排行榜
2019/07/24
1.2K0
AI魔幻行为大赏:细数机器视觉的9大应用场景
视频精修一帧要花2小时?美图影像研究院的AI只要5.3毫秒!
进入全民短视频时代,人像视频的拍摄也正在迈向专业化。随着固化审美的瓦解,十级磨皮的网红滤镜被打破,多元化的高级质感成为新的风向标,「美」到每一帧是人们对动态视频提出的更高要求。
机器之心
2021/12/13
9950
视频精修一帧要花2小时?美图影像研究院的AI只要5.3毫秒!
直播系统开发:关于直播源码中美颜SDK的作用
美颜、美型、滤镜等功能已经是拍照类APP的标配,直播系统开发中也更是离不开这些功能。拍照拍视频或者开启直播时,总希望能够加一些萌萌的兔耳朵,或者一些更复杂的3D人脸面具等特效。但是由于这类技术涉及人脸追踪,以及图形渲染等技术,想要自己从零开始研发,调试会消耗大量的时间和成本,而所有成解决方案的服务一定都是成本最低的,那么拍摄类、视频社交类APP都会使用第三方SDK来实现这些功能。通过加入美颜SDK让直播源码作为直播行业生命力具体的展示。我们来看一下加入美颜SDK后,直播源码作为一块基石,是怎样得到广大用户的喜爱的?
布谷安妮
2020/10/27
2.8K0
直播系统开发:关于直播源码中美颜SDK的作用
Portraiture4最新li磨皮滤镜插件
Portraiture4是一款智能磨皮的滤镜插件,该插件能够给Photoshop和Lightroom添加智能磨皮美化功能,可以帮助用户快速对图片中的人物的皮肤、头发、眉毛等部位进行美化,省去了手动调整的麻烦,大大提高P图的效率。Portraiture这是一款适用于PS和LR的磨皮滤镜插件,操作简便、省去了选择蒙版和逐步像素处理的繁琐流程,帮助您实现高效的肖像修饰。新一代的皮肤平滑,修复和增强软件建立在第2版的技术上,具有两倍的速度和性能,加上输出质量的细化,产生一致和令人满意的修饰效果。
用户7442547
2023/02/09
2K0
人脸到底是怎样识别的
人脸识别技术原理简单来讲主要是三大步骤:一是建立一个包含大批量人脸图像的数据库,二是通过各种方式来获得当前要进行识别的目标人脸图像,三是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选。根据人脸识别技术原理具体实施起来的技术流程则主要包含以下四个部分,即人脸图像的采集与预处理、人脸检测、人脸特征提取、人脸识别和活体鉴别。
刘盼
2018/12/28
2.7K0
人脸到底是怎样识别的
推荐阅读
相关推荐
【深度算法】APP直播想实现“逆天”美颜,你只需要一个人脸识别API
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档