前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Stanford机器学习笔记-5.神经网络Neural Networks (part two)

Stanford机器学习笔记-5.神经网络Neural Networks (part two)

作者头像
llhthinker
发布2018-03-13 10:48:14
7850
发布2018-03-13 10:48:14
举报
文章被收录于专栏:机器学习与自然语言处理

5 Neural Networks (part two)

content:

  5 Neural Networks (part two)

    5.1 cost function

    5.2 Back Propagation

    5.3 神经网络总结

接上一篇4. Neural Networks (part one). 本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结。

5.1 cost function

(注:正则化相关内容参见3.Bayesian statistics and Regularization)

5.2 Back Propagation

(详细推导过程参见反向传播算法,以及李宏毅的机器学习课程:youtube,B站)。

图5-1 BP算法步骤

在实现反向传播算法时,有如下几个需要注意的地方。

  1. 需要对所有的连接权重(包括偏移单元)初始化为接近0但不全等于0的随机数。如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数(也就是说,所有神经元的激活值都会取相同的值,对于任何输入x 都会有:

 )。随机初始化的目的是使对称失效。具体地,我们可以如图5-2一样随机初始化。(matlab实现见后文代码1)

  1. 如果实现的BP算法计算出的梯度(偏导数)是错误的,那么用该模型来预测新的值肯定是不科学的。所以,我们应该在应用之前就判断BP算法是否正确。具体的,可以通过数值的方法(如图5-3所示的)计算出较精确的偏导,然后再和BP算法计算出来的进行比较,若两者相差在正常的误差范围内,则BP算法计算出的应该是比较正确的,否则说明算法实现有误。注意在检查完后,在真正训练模型时不应该再运行数值计算偏导的方法,否则将会运行很慢。(matlab实现见后文代码2)
  2. 用matlab实现时要注意matlab的函数参数不能为矩阵,而连接权重为矩阵,所以在传递初始化连接权重前先将其向量化,再用reshape函数恢复。(见后文代码3)

图5-2 随机初始化连接权重

图5-3 数值方法求代价函数偏导的近似值

5.3 神经网络总结

第一步,设计神经网络结构。

隐藏层单元个数通常都是不确定的。

一般选取神经网络隐藏层单元个数的几个经验公式如下:

参考https://www.zhihu.com/question/46530834

此外,MNIST手写数字识别中给出了以不同的神经网络结构训练的结果,供参考

第二步,实现正向传播(FP)和反向传播算法,这一步包括如下的子步骤。

第三步,用数值方法检查求偏导的正确性

第四步,用梯度下降法或更先进的优化算法求使得代价函数最小的连接权重

在第四步中,由于代价函数是非凸(non-convex)函数,所以在优化过程中可能陷入局部最优值,但不一定比全局最优差很多(如图5-4),在实际应用中通常不是大问题。也会有一些启发式的算法(如模拟退火算法遗传算法等)来帮助跳出局部最优。

图5-4 陷入局部最优(不一定比全局最优差很多)

代码1:随机初始化连接权重

代码语言:javascript
复制
function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the column row of W handles the "bias" terms
%

W = zeros(L_out, 1 + L_in);


% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first row of W corresponds to the parameters for the bias units
%

epsilon_init = sqrt(6) / (sqrt(L_out+L_in));
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;

end

代码2:用数值方法求代价函数对连接权重偏导的近似值

代码语言:javascript
复制
function numgrad = computeNumericalGradient(J, theta)
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
%and gives us a numerical estimate of the gradient.
%   numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
%   gradient of the function J around theta. Calling y = J(theta) should
%   return the function value at theta.

% Notes: The following code implements numerical gradient checking, and 
%        returns the numerical gradient.It sets numgrad(i) to (a numerical 
%        approximation of) the partial derivative of J with respect to the 
%        i-th input argument, evaluated at theta. (i.e., numgrad(i) should 
%        be the (approximately) the partial derivative of J with respect 
%        to theta(i).)
%                

numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
    % Set perturbation vector
    perturb(p) = e;
    % Compute Numerical Gradient
    numgrad(p) = ( J(theta + perturb) - J(theta - perturb)) / (2*e);
    perturb(p) = 0;
end
end

代码3:应用FP和BP算法实现计算隐藏层为1层的神经网络的代价函数以及其对连接权重的偏导数

代码语言:javascript
复制
function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network:Theta1: 1->2; Theta2: 2->3 
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));
           
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));  
Theta2_grad = zeros(size(Theta2));

%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.

for i = 1:m
    % compute activation by Forward Propagation
    a1 = [1; X(i,:)'];
    z2 = Theta1 * a1;
    a2 = [1; sigmoid(z2)];
    z3 = Theta2 * a2;
    h = sigmoid(z3);
    
    yy = zeros(num_labels,1);
    yy(y(i)) = 1;              % 训练集的真实值yy
   
    J = J + sum(-yy .* log(h) - (1-yy) .* log(1-h));
    
    % Back Propagation 
    delta3 = h - yy;
    delta2 = (Theta2(:,2:end)' * delta3) .* sigmoidGradient(z2); %注意要除去偏移单元的连接权重
    
    Theta2_grad = Theta2_grad + delta3 * a2';   
    Theta1_grad = Theta1_grad + delta2 * a1';
end

J = J / m + lambda * (sum(sum(Theta1(:,2:end) .^ 2)) + sum(sum(Theta2(:,2:end) .^ 2))) / (2*m);

Theta2_grad = Theta2_grad / m;
Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + lambda * Theta2(:,2:end) / m; % regularized nn

Theta1_grad = Theta1_grad / m;
Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + lambda * Theta1(:,2:end) / m; % regularized nn

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];

end
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016-04-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 5 Neural Networks (part two)
    • 5.1 cost function
      • 5.2 Back Propagation
        • 5.3 神经网络总结
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档