下文概括了围棋借助人工智能在 2016 年实现的突破。
围棋是一个完全信息博弈问题。而完全信息博弈,通常能被简化为寻找最优值的树搜索问题。它含有 b 的 d 次方个可能分支,在国际象棋中 b≈35,d≈80;而在围棋中 b≈250,d≈150。很显然,对于围棋,用穷举法或简单的寻路算法(heuristics)是行不通的。但有效的方法是存在的:
状态分数 = 价值网络输出 + 快速运行(fast rollout)的策略结果 + 监督学习策略网络输出
高状态得分(或者说落子)会被选择。价值网络输出和快速运行策略结果是评估函数,在叶子节点进行评估(注意,为了评估快速运行,需要一直到最后一步)。监督学习策略网络输出是一个当前阶段的 action 概率,充作选取分数的奖励分。该分数会随访问次数而退化,以鼓励探索。注意强化学习策略网络只被用于辅助,来生成价值网络,并没有直接在蒙特卡洛树搜索中使用。
到这就结束了,以上就是战胜了人类的 AlphaGo 算法!
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有