前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)

POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)

作者头像
ShenduCC
发布2018-04-25 17:26:23
发布2018-04-25 17:26:23
92200
代码可运行
举报
文章被收录于专栏:算法修养算法修养
运行总次数:0
代码可运行

Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44464 Accepted: 18186 Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. Sample Input

abcfbc abfcab programming contest abcd mnp Sample Output

4 2 0

裸的最长公共子序列问题: 状态转移方程: if(s1[i]==s2[j]) dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

代码语言:javascript
代码运行次数:0
运行
复制
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <string>

using namespace std;
char s1[300];
char s2[300];
int dp[300][300];
int main()
{

    while(scanf("%s%s",&s1,&s2)!=EOF)
    {
        int len1=strlen(s1);
        int len2=strlen(s2);
                 memset(dp,0,sizeof(dp));
        for(int i=0;i<len1;i++)
        {
            for(int j=0;j<len2;j++)
            {
                if(s1[i]==s2[j])
                    dp[i+1][j+1]=dp[i][j]+1;
                else
                    dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);

            }
        }
        cout<<dp[len1][len2]<<endl;
    }
    return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2015-12-25 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档