Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >在物联网中应用机器学习:使用 Android Things 与 TensorFlow

在物联网中应用机器学习:使用 Android Things 与 TensorFlow

作者头像
未来守护者
发布于 2018-05-04 02:52:34
发布于 2018-05-04 02:52:34
3.4K90
代码可运行
举报
文章被收录于专栏:安全领域安全领域
运行总次数:0
代码可运行

本项目探讨如何将机器学习(Machine learning)应用到物联网(IoT,Internet of Things)中。我们将使用 Android Things 作为我们的物联网平台,并且采用 Google TensorFlow 作为我们的机器学习引擎。如今,机器学习与物联网都是技术话题中的大热门。下面是维基百科上对机器学习的一个简单定义

机器学习是计算机科学中的一个领域,它使计算机系统能够利用数据进行 “学习”(即逐步提高特定任务的性能),而不需要进行显式编程(Explicitly programmed)。

换句话说,在进行训练步骤以后,系统就可以预测结果(即使这不是专门为这些结果进行编程的)。另一方面,我们都了解物联网以及连接设备的概念。最有前途的话题之一便是如何将机器学习应用于物联网之中,以构建能够 “学习” 的专家系统。此外,该系统会运用这些知识来控制和管理实物。

下面列举一些应用到机器学习,以及物联网能产生重要价值的领域:

  • 预测维护(Predictive maintenance)中的工业物联网(IIoT,Industrial IoT)。
  • 在消费者物联网(Consumer IoT)中,机器学习可以使设备变得更加智能化,从而适应我们的习惯。

在本教程中,我们将探索如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中。这一 Android Things 物联网项目背后的基本思想就是,探索如何构建一个能够识别一些基本形状(比如箭头)并被控制的机器人小车(Robot car)。我们已经介绍过如何使用 Android Things 构建机器人小车,我建议您在开始此项目之前先阅读那篇教程。

本次机器学习和物联网项目主要涵盖以下主题:

  • 如何使用 Docker 配置 TensorFlow 环境
  • 如何训练 TensorFlow 系统
  • 如何集成 TensorFlow 与 Android Things
  • 如何使用 TensorFlow 输出结果来控制机器人小车

本项目衍生自 Android Things TensorFlow 图像分类器

我们开始吧!

如何在 Tensorflow 中创建一个图像分类器

在开始之前,我们有必要先安装并配置好 TensorFlow 环境。我并非机器学习专家,所以我需要找一些速成的东西并准备好使用,以便我们可以构建 TensorFlow 图像分类器。因此,我们可以使用 Docker 来运行一个搭载了 TensorFlow 的映像。照着以下步骤进行:

1. 克隆 TensorFlow 仓库:

代码语言:text
AI代码解释
复制
git clone https://github.com/tensorflow/tensorflow.git
cd /tensorflow
git checkout v1.5.0

2. 创建一个目录(/tf-data),该目录将保存我们在项目中需要用到的所有文件。

3. 运行 Docker:

代码语言:text
AI代码解释
复制
docker run -it \
--volume /tf-data:/tf-data \
--volume /tensorflow:/tensorflow \ 
--workdir /tensorflow tensorflow/tensorflow:1.5.0 bash

使用这些命令,我们就可以运行一个交互式 TensorFlow 环境并增加(Mount)一些我们将在项目中使用到的目录。

如何训练 TensorFlow

在 Android Things 系统能够识别图像之前,我们有必要先训练 TensorFlow 引擎,以构建其模型。以此为由,收集一些图片是有必要的。如前所述,我们希望使用箭头来控制 Android Things 机器人小车 —— 所以我们必须收集至少四种类型的箭头:

  • 向上箭头
  • 向下箭头
  • 左箭头
  • 右箭头

为训练该系统,我们有必要对这四种不同的图像类别创建一个“知识库”。在 /tf-data 中一个名为 images 的目录下创建四个目录,命名如下:

  • up-arrow
  • down-arrow
  • left-arrow
  • right-arrow

现在是时候去搜集图像资源了。我使用的是 Google 图片搜索,您也可以使用其他方法进行搜集。为了简化图片下载过程,您应该安装 Chrome 插件,它能够一键下载所有图片。可别忘了,您下载的图像越多,其训练过程(Training process)越好(即使创建模型的时间可能会有所增加)。

打开浏览器,开始查找以下四类图像:

每个类别我分别下载了 80 张图。我并不关心图片的扩展。

一旦所有类别都有其图像,请按照以下步骤操作(在 Docker 界面中):

代码语言:text
AI代码解释
复制
python /tensorflow/examples/image_retraining/retrain.py \ 
--bottleneck_dir=tf_files/bottlenecks \
--how_many_training_steps=4000 \
--output_graph=/tf-data/retrained_graph.pb \
--output_labels=/tf-data/retrained_labels.txt \
--image_dir=/tf-data/images

这操作可能需要花费一些时间,所以要耐心等待。最后,在你的文件夹 /tf-data 中应有两个文件:

  1. retrained_graph.pb
  2. retrained_labels.txt

第一个文件包含我们的模型,这是 TensorFlow 训练过程的结果。而第二个文件则包含了与我们的四个图像类别相关的标签。

如何测试 Tensorflow 模型

如果你想测试模型,以检查一切是否正常,你可以使用以下命令:

代码语言:text
AI代码解释
复制
python scripts.label_image \
--graph=/tf-data/retrained-graph.pb \
--image=/tf-data/images/[category]/[image_name.jpg]

优化模型

在能够使用这个 TensorFlow 模型到 Android Things 项目中之前,我们有必要优化它:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
python /tensorflow/python/tools/optimize_for_inference.py \
--input=/tf-data/retrained_graph.pb \
--output=/tf-data/opt_graph.pb \
--input_names="Mul" \
--output_names="final_result"

这就是我们的模型。我们将使用此模型将机器学习应用于物联网(即集成 Android Things 与 TensorFlow)。其目标是为 Android Things 应用提供智能识别箭头图像,并作出相应反应,从而控制机器人小车的方向。

如果您想了解更多关于 TensorFlow 的细节,以及如何生成模型,请查看官方文档和这个教程

如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中

一旦 TensorFlow 数据模型准备就绪,我们就可以进入下一步:如何集成 Android Things 与 TensorFlow。为达成这一目的,我们可以将此任务分为两步:

  1. 硬件部分,我们将电机和其他外围设备(Peripheral)连接到 Android Things 板上
  2. 实现应用程序

Android Things 原理图

在深入探讨如何连接外围设备之前,我们先看看下面这个 Android Things 项目中使用的组件列表:

  1. Android Things 板(树莓派 3,Raspberry Pi 3)
  2. 树莓派相机
  3. 一个 LED 灯
  4. LN298N 双H桥(用以控制电机)
  5. 带两个轮子的机器人小车底盘

我不在此介绍如何使用 Android Things 控制电机,因为我们已经在之前的文章中介绍过这一点。

以下是原理图:

上图中,相机组件并未表现出来。其最终的结果如下:

基于 TensorFlow 实现 Android Things App

最后一步便是实现 Android Things 应用程序。为此,我们可以重用 GitHub 上名为 TensorFlow 图像分类器示例的示例项目。在开始之前,先克隆 GitHub 仓库,以便您可以修改源代码。

该 Android Things 应用与原来的应用有所不同,在于:

  1. 它不使用按钮来启动相机捕捉图像
  2. 它使用不同的模型
  3. 它使用一个闪烁的 LED 进行通知,摄像机在 LED 停止闪烁后拍摄照片
  4. 它在 TensorFlow 检测到图像(箭头)时控制电机。此外,在从步骤 3 开始循环之前,先打开电机 5 秒

要处理闪烁的 LED,请使用以下代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
private Handler blinkingHandler = new Handler();
private Runnable blinkingLED = new Runnable() {
  @Override
  public void run() {
    try {
     // If the motor is running the app does not start the cam
     if (mc.getStatus())
       return ;
     Log.d(TAG, "Blinking..");
     mReadyLED.setValue(!mReadyLED.getValue());
     if (currentValue <= NUM_OF_TIMES) {
       currentValue++;
       blinkingHandler.postDelayed(blinkingLED, 
                       BLINKING_INTERVAL_MS);
     }
     else {
      mReadyLED.setValue(false);
      currentValue = 0;
      mBackgroundHandler.post(mBackgroundClickHandler);
     }
   } catch (IOException e) {
     e.printStackTrace();
   }
  }
};

当 LED 停止闪烁时,应用程序将捕获图像。

现在有必要关注如何根据检测到的图像来控制电机。修改方法如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@Override
public void onImageAvailable(ImageReader reader) {
  final Bitmap bitmap;
   try (Image image = reader.acquireNextImage()) {
     bitmap = mImagePreprocessor.preprocessImage(image);
   }
   final List<Classifier.Recognition> results = 
      mTensorFlowClassifier.doRecognize(bitmap);
   Log.d(TAG, 
    "Got the following results from Tensorflow: " + results);
   // Check the result
   if (results == null || results.size() == 0) {
     Log.d(TAG, "No command..");
     blinkingHandler.post(blinkingLED);
     return ;
    }
    Classifier.Recognition rec = results.get(0);
    Float confidence = rec.getConfidence();
    Log.d(TAG, "Confidence " + confidence.floatValue());
    if (confidence.floatValue() < 0.55) {
     Log.d(TAG, "Confidence too low..");
     blinkingHandler.post(blinkingLED);
     return ;
    }
    String command = rec.getTitle();
    Log.d(TAG, "Command: " + rec.getTitle());
    if (command.indexOf("down") != -1)
       mc.backward();
    else if (command.indexOf("up") != -1)
       mc.forward();
    else if (command.indexOf("left") != -1)
       mc.turnLeft();
    else if (command.indexOf("right") != -1)
       mc.turnRight();
}

在这种方法中,当 TensorFlow 返回匹配捕获图像的可能标签后,应用程序会将结果与可能的方向进行比较,从而控制电机。

最后,是时候使用在刚开始时创建的模型了。拷贝 assets 文件夹下的 opt_graph.pb 与 reatrained_labels.txt 文件,并替换现有文件。

打开 Helper.java 并修改以下几行:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public static final int IMAGE_SIZE = 299;
private static final int IMAGE_MEAN = 128;
private static final float IMAGE_STD = 128;
private static final String LABELS_FILE = "retrained_labels.txt";
public static final String MODEL_FILE = "file:///android_asset/opt_graph.pb";
public static final String INPUT_NAME = "Mul";
public static final String OUTPUT_OPERATION = "output";
public static final String OUTPUT_NAME = "final_result";

运行应用程序,试试向相机展示箭头,并检查结果。机器人小车必须按照所示的箭头进行移动。

小结

在本教程的最后,我们介绍了如何运用 Android Things 与 TensorFlow 将机器学习应用到物联网中。我们可以使用图像控制机器人小车,并根据显示的图像移动机器人小车。

评论
登录后参与评论
9 条评论
热度
最新
这小车用着怎么样
这小车用着怎么样
回复回复点赞举报
TensorFlow不是人工智能神经网络?我看到身边有人在学
TensorFlow不是人工智能神经网络?我看到身边有人在学
回复回复点赞举报
你怎么有那么多时间写文章,真是超高产啊。
你怎么有那么多时间写文章,真是超高产啊。
回复回复点赞举报
运用 Android Things 与 TensorFlow 将机器学习应用到物联网中,又get到好东西了,谢谢!
运用 Android Things 与 TensorFlow 将机器学习应用到物联网中,又get到好东西了,谢谢!
回复回复点赞举报
很好的解决方案,感谢分享!
很好的解决方案,感谢分享!
回复回复点赞举报
哇,这电机图让我想起了高中物理实验
哇,这电机图让我想起了高中物理实验
回复回复点赞举报
TensorFlow训练图片对格式有要求吗?还是什么格式都可以
TensorFlow训练图片对格式有要求吗?还是什么格式都可以
回复回复点赞举报
学习了,当做入门
学习了,当做入门
回复回复点赞举报
回复回复点赞举报
推荐阅读
编辑精选文章
换一批
教程 | 如何在手机上使用TensorFlow
翻译 | AI科技大本营 参与 | zzq 审校 | reason_W 我们知道,TensorFlow是一个深度学习框架,它通常用来在服务器上训练需要大量数据的大模型。随着智能手机的普及,人们也越来越
AI科技大本营
2018/04/26
2.7K0
教程 | 如何在手机上使用TensorFlow
小白也可以操作的手机TensorFlow教程:Android版和iOS版
TensorFlow通常用于训练海量数据,但新兴的智能手机市场也不可忽略。那些不能等待未来和love Machine Learning的人正在通过制造工具来突破界限,他们的目标是拥有数万亿美元的市场。
AiTechYun
2018/03/02
1.4K0
小白也可以操作的手机TensorFlow教程:Android版和iOS版
学习笔记TF066 : TensorFlow 移动端应用,iOS、Android系统实践
TensorFlow对Android、iOS、树莓派都提供移动端支持。 移动端应用原理。移动端、嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应;二在本地运行模型,
利炳根
2017/11/14
3.2K0
TensorFlow 智能移动项目:1~5
本章介绍如何设置开发环境,以使用 TensorFlow 构建所有 iOS 或 Android 应用,本书其余部分对此进行了讨论。 我们不会详细讨论可用于开发的所有受支持的 TensorFlow 版本,OS 版本,Xcode 和 Android Studio 版本,因为可以在 TensorFlow 网站或通过 Google。 相反,我们将在本章中简要讨论示例工作环境,以便我们能够快速了解​​可使用该环境构建的所有出色应用。
ApacheCN_飞龙
2023/04/24
4.7K0
使用Tensorflow构建属于自己的图片分类器
近几年火热的AI领域吸引了众多有志之士加入,在一段时间的学习之后,不知道你是否有一个疑惑:我能够用AI来做点什么呢?
云水木石
2019/07/01
1.1K0
使用Tensorflow构建属于自己的图片分类器
[Tensorflow] 在Android运行TensorFlow模型
以下代码来自于TensorFlowObjectDetectionAPIModel.java
wOw
2018/09/18
2.1K0
教程 | 从零开始:TensorFlow机器学习模型快速部署指南
选自Hive Blog 作者:Bowei 机器之心编译 参与:李亚洲、李泽南 本文将介绍一种将训练后的机器学习模型快速部署到生产种的方式。如果你已使用 TensorFlow 或 Caffe 等深度学习框架训练好了 ML 模型,该模型可以作为 demo。如果你更喜欢轻量级的解决方案,请阅读本文。 GitHub 地址:https://github.com/hiveml/simple-ml-serving 其中包含的条目有: 检查 TensorFlow 安装:https://github.com/hiveml/s
机器之心
2018/05/10
9160
TensorFlow 智能移动项目:11~12
在前九章中,我们使用 TensorFlow Mobile 在移动设备上运行各种由 TensorFlow 和 Keras 构建的强大的深度学习模型。 正如我们在第 1 章,“移动 TensorFlow 入门”中提到的那样,Google 还提供了 TensorFlow Lite(可替代 TensorFlow Mobile 的版本)在移动设备上运行模型。 尽管自 Google I/O 2018 起它仍在开发人员预览中,但 Google 打算“大大简化开发人员针对小型设备的模型定位的体验。” 因此,值得详细研究 TensorFlow Lite 并为未来做好准备。
ApacheCN_飞龙
2023/04/24
4.5K0
TensorFlow 智能移动项目:11~12
将 TensorFlow 训练好的模型迁移到 Android APP上(TensorFlowLite)
最近在做一个数字手势识别的APP(关于这个项目,我会再写一篇博客仔细介绍,博客地址:一步步做一个数字手势识别APP,源代码已经开源在github上,地址:Chinese-number-gestures-recognition),要把在PC端训练好的模型放到Android APP上,调研了下,谷歌发布了TensorFlow Lite可以把TensorFlow训练好的模型迁移到Android APP上,百度也发布了移动端深度学习框架mobile-deep-learning(MDL),这个框架应该是paddlepaddle的手机版,具体的细节没有了解过。因为对TensorFlow稍微熟悉些,因此就决定用TensorFlow来做。
AI研习社
2018/08/06
2.1K0
将 TensorFlow 训练好的模型迁移到 Android APP上(TensorFlowLite)
如何使用 TensorFlow mobile 将 PyTorch 和 Keras 模型部署到移动设备
截止到今年,已经有超过 20 亿活跃的安卓设备。安卓手机的迅速普及很大程度上是因为各式各样的智能 app,从地图到图片编辑器应有尽有。随着深度学习的出现,我们的手机 app 将变得更加智能。下一代由深度学习驱动的手机 app 将可以学习并为你定制功能。一个很显著的例子是「Microsoft Swiftkey」,这是一个键盘 app, 能通过学习你常用的单词和词组来帮助你快速打字。
AI研习社
2018/07/26
3.7K0
如何使用 TensorFlow mobile 将 PyTorch 和 Keras 模型部署到移动设备
【TensorFlow】使用迁移学习训练自己的模型
最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。
刘早起
2020/04/23
2.2K0
TensorFlow实战——图像分类神经网络模型
Learn how to classify images with TensorFlow 使用TensorFlow创建一个简单而强大的图像分类神经网络模型 by Adam Monsen ▌引言 由于深度学习算法和硬件性能的快速发展,研究人员和各大公司在图像识别,语音识别,推荐引擎和机器翻译等领域取得了长足的进步。六年前,在计算机视觉领域首先出现重大突破,这其中以CNN模型在ImageNet数据集上的成功为代表。两年前,Google Brain团队开源TensorFlow,使得我们可以灵巧快速地开发自己的
企鹅号小编
2018/01/25
1.5K0
手把手:我的深度学习模型训练好了,然后要做啥?
大数据文摘作品 编译:姜范波、云舟 本文讲的是如何快速而不求完美地部署一个训练好的机器学习模型并应用到实际中。如果你已经成功地使用诸如Tensorflow或Caffe这样的框架训练好了一个机器学习模型,现在你正在试图让这个模型能够快速的演示,那么读这篇文章就对了。 阅读时长: 10-15分钟 使用前检查清单 检查tensorflow的安装 从 stdin 运行在线分类 在本地运行分类 把分类器放到硬编码(hardcoded)的代理 把分类器放到有服务发现(service discovery)的代理 用一
大数据文摘
2018/05/24
1.7K0
[译]Android TensorFlow机器学习示例
本文介绍了一种在Android平台上使用TensorFlow进行物体检测的方法。首先介绍了Android平台如何调用TensorFlow,然后介绍了如何使用预训练的模型进行物体检测。最后,给出了一段示例代码和一张运行结果图。
MelonTeam
2018/01/04
9370
[译]Android TensorFlow机器学习示例
C-SATS工程副总裁教你如何用TensorFlow分类图像 part1
最近在深度学习算法和硬件性能方面的最新进展使研究人员和公司在图像识别,语音识别,推荐引擎和机器翻译等领域取得了巨大的进步。六年前,首次机器在视觉模式识别方面的表现首次超过人类。两年前,Google Brain团队发布了TensorFlow,让深度学习可以应用于大众。TensorFlow超越了许多用于深度学习的复杂工具。 有了TensorFlow,你可以访问具有强大功能的复杂特征。它之所以如此强大,是因为TensorFlow的易用性非常好。 本文由两部分组成,我将介绍如何快速创建用于实际图像识别的卷积神经网络
AiTechYun
2018/03/06
7300
C-SATS工程副总裁教你如何用TensorFlow分类图像 part1
从零开始:TensorFlow机器学习模型快速部署指南
选自Hive Blog 作者:Bowei 机器之心编译 参与:李亚洲、李泽南 本文将介绍一种将训练后的机器学习模型快速部署到生产种的方式。如果你已使用 TensorFlow 或 Caffe 等深度学习框架训练好了 ML 模型,该模型可以作为 demo。如果你更喜欢轻量级的解决方案,请阅读本文。 GitHub 地址:https://github.com/hiveml/simple-ml-serving 其中包含的条目有: 检查 TensorFlow 安装:https://github.com/hiveml/s
企鹅号小编
2018/02/02
1.5K0
TensorFlow可应用于Android Things的物联网;GitHub发布开源指南 | AI开发者头条
【AI研习社】关注AI前沿、开发技巧及技术教程等方面的内容。欢迎技术开发类文章、视频教程等内容投稿,邮件发送至:zhangxian@leiphone.com Android Things给物联网设备带
AI研习社
2018/03/29
1.1K0
TensorFlow可应用于Android Things的物联网;GitHub发布开源指南 | AI开发者头条
使用TensorFlow Lite在Android手机上实现图像分类
TensorFlow Lite是一款专门针对移动设备的深度学习框架,移动设备深度学习框架是部署在手机或者树莓派等小型移动设备上的深度学习框架,可以使用训练好的模型在手机等设备上完成推理任务。这一类框架的出现,可以使得一些推理的任务可以在本地执行,不需要再调用服务器的网络接口,大大减少了预测时间。在前几篇文章中已经介绍了百度的paddle-mobile,小米的mace,还有腾讯的ncnn。这在本章中我们将介绍谷歌的TensorFlow Lite。
夜雨飘零
2020/05/06
3.9K0
安卓手机如何玩转动作手势检测?有TensorFlow就够了,附实用教程
原文来源:Lemberg Solutions Ltd 作者:Zahra Mahoor、Jack Felag、 Josh Bongard 编译:嗯~阿童木呀、KABUDA 现如今,与智能手机进行交互的方式有很多种:触摸屏、硬件按钮、指纹传感器、视频摄像头(如人脸识别)、方向键(D-PAD)、手持设备控制等等。但是我们该如何使用动作识别功能呢? 我们可以举一个例子来说明这个问题,比如当你持手机将其快速移动到左侧或右侧时,可以非常精确地显示出想要切换到播放列表中下一首或上一首歌曲的意图;或者,你可以将手机快
企鹅号小编
2018/01/25
3.1K0
【C++】和【预训练模型】实现【机器学习】【图像分类】的终极指南
在现代机器学习和人工智能应用中,图像分类是一个非常常见且重要的任务。通过使用预训练模型,我们可以显著减少训练时间并提高准确性。C++作为一种高效的编程语言,特别适用于需要高性能计算的任务。
小李很执着
2024/06/15
3890
推荐阅读
相关推荐
教程 | 如何在手机上使用TensorFlow
更多 >
加入讨论
的问答专区 >
1技术总监架构部总经理擅长3个领域
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验