Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >量化派基于Hadoop、Spark、Storm的大数据风控架构

量化派基于Hadoop、Spark、Storm的大数据风控架构

作者头像
用户1737318
发布于 2018-06-05 07:25:11
发布于 2018-06-05 07:25:11
1.3K0
举报
文章被收录于专栏:人工智能头条人工智能头条

量化派是一家金融大数据公司,为金融机构提供数据服务和技术支持,也通过旗下产品“信用钱包”帮助个人用户展示经济财务等状况,撮合金融机构为用户提供最优质的贷款服务。金融的本质是风险和流动性,但是目前中国对于个人方面的征信行业发展落后于欧美国家,个人消费金融的需求没有得到很好的满足。按照央行最新数据,目前央行征信中心的数据覆盖人口达到8亿人[1],但其中有实际征信记录的只有3亿人左右,有5亿人在征信系统中只是一个身份证号码。此外,我国还有5亿人跟银行从来没有信贷交易关系,这5亿人对金融部门来说是陌生人。这样算下来,有征信记录的人只占到全国人口数的23.7%,远低于美国征信体系对人口的85%的覆盖率。如何在信用记录缺失的情况下,做好多个人用户的风险定价,是个棘手的难题。量化派通过基于机器学习和互联网化的风险定价,整合互联网及传统数据源,对个人在消费金融应用场景里的信用风险进行评估。这篇文章就主要介绍一下量化派的大数据平台,以及机器学习在量化派的应用。

一、互联网化的风控创新

量化派及“信用钱包”的核心任务是让用户可以凭借其良好的信用,而无需抵押或者担保就可以贷款。也就是说,用户仅凭信用即可开启财富之门。为了达到这个目的,信用钱包需要把用户个性化的需求与信贷产品信息精准匹配到一起。在帮助用户找到合适自己的信贷产品的同时,也帮助信贷产品公司找到了最合适的贷款用户,从而实现信贷消费者和信贷产品提供者的双赢。为了确保贷款的高成功率,为了更好的掌握用户需求以及对个人进行信用评级,我们需要大数据平台的支持。

目前,可以接入央行征信中心的金融机构仅仅只有银行、持牌照的第三方征信服务商以及部分地区的小贷公司,绝大多数的P2P平台还无法接入央行的征信数据,这无疑加大了P2P平台的风控难度。在征信思路上,传统征信是用昨天的信用记录来判断今天的信用价值,这未见得就是最合理的。在征信技术上,传统的方法是从线下采集信用数据,效率比较低。可以说,传统的线下征信技术限制了数据来源和信用评估思路,而互联网的技术、工具和思维则具备了改变这一切的可能性。回归到征信的本质,其实就在于解决两方面问题:信用能力和信用意愿,换而言之,即解决个人的还款能力和还款意愿,再追根溯源一点,即解决坏账和逾期两个问题[2]。量化派公司基于大数据的用户征信和传统征信殊途同归,所不同的是,传统征信中,数据依赖于银行信贷数据,而大数据征信的数据并不仅仅包括传统的信贷数据,同时也包括了与消费者还款能力、还款意愿相关的一些描述性风险特征,这些相关性描述风险特征的抽取与筛选是量化派的技术核心。相比于传统征信数据的强相关性,这些大数据征信的数据与消费者的信用状况相关性较弱,量化派就利用大数据技术,通过用户授权等方法搜集了更多的数据维度来加强这些弱相关数据的描述能力。这样就使大数据征信不依赖于传统信贷数据,就可以对传统征信无法服务的人群进行征信,实现对整个消费者人群的覆盖[3]。我们的数据来源如下图所示:

图一 量化派的数据来源

二、量化派的大数据平台架构

量化派的信用钱包每天都会获取大量的用户的注册信息等结构化数据以及爬虫抓取的非结构化数据,还有第三方的接入数据,系统运行产生的日志数据等等,数据的形式多种多样,如何保护好、利用好这些数据,是公司重中之重的任务。量化派的业务也决定了公司是数据驱动型的。为了更好的满足公司日益增长变化的业务,在大数据平台建设中全面拥抱开源的基础上,进行了不停迭代设计,对数据平台中采用的开源软件进行了深度应用开发,同时还开发了很多契合业务需求的工具软件,很好的支撑我们去实现普惠金融的理想。量化派公司的数据平台架构如图二所示。

图二 量化派的数据平台架构

相比我国的网民数量,信贷用户只占其中的一小部分,所以我司产品的用户基数并不是非常大,但是,为了给信贷用户更准确的信用评级,对于每个信贷用户我们都会从多个渠道获取大量的有效数据,这些数据聚合起来也是海量数据规模。公司发展伊始,几乎将所有的数据都存放在Mysql关系数据库中,工程师使用标准SQL语句来存储或者调用数据资源。Mysql很快就遇到了性能瓶颈,虽然可以通过不停地优化整个Mysql集群以应对数据的快速增长,但是面对复杂的数据业务需求,Mysql显然无法提供最优的解决方案。所以我司最终决定将数据迁移到大数据平台上,Mysql仅用来存储需要经常变化的状态类数据。除了系统运行日志直接存放在HDFS之中,大量的数据利用HBase来进行管理。HBase中的数据按照不同的数据源存放在不同的表中,每张表按照业务和存储需求对rowkey进行精心设计,确保海量数据中查询所需数据毫秒级返回。

根据业务的不同特点,对于常规的数据ETL处理,我们使用MapReduce[4]框架来完成;BI和数据挖掘这些工作都放到了Spark[5]上。这样一来,依赖不同任务或不同计算框架间的数据共享情况在所难免,例如Spark的分属不同Stage的两个任务,或Spark与MapReduce框架的数据交互。在这种情况下,一般就需要通过磁盘来完成数据交换,而这通常是效率很低的。为了解决这个问题,我们引入了Tachyon[6]中间层,数据交换实际上在内存中进行了。而且,使用了Tachyon之后还解决了Spark任务进程崩溃后就要丢失进程中的所有数据的问题,因为此时数据都在Tachyon里面了,从而进一步提升了Spark的性能。Tachyon自身也具有较强的容错性,Tachyon集群的master通过ZooKeeper[7]来管理,down机时会自动选举出新的leader,并且worker会自动连接到新的leader上。

多维度的征信大数据可以使得量化派可以融合多源信息,采用了先进机器学习的预测模型和集成学习的策略,进行大数据挖掘。不完全依赖于传统的征信体系,即可对个人消费者从不同的角度进行描述和进一步深入地量化信用评估。公司开发了多个基于机器学习的分析模型,对每位信贷申请人的数千条数据信息进行分析,并得出数万个可对其行为做出测量的指标,这些都在数秒之内完成。

三、不同场景的机器学习方法

上部分说到量化派首先需要对用户进行信用风险的评估,为了让用户可以仅凭信用,而无需抵押和担保就可贷款成功。美国有着很完善的征信体系,以及成熟的信用评估系统。通过几十年的发展,美国的三大征信局[8]对85%的公民有着详细的信用记录:包括信用卡,房贷,以往的住址,工作等情况都有记录在案。而且在找工作,租房时候也会查询个人信用记录,如果有违约等不良行为也会反馈给征信局。Fair Issac公司的FICO评分是业界应用最为广泛的评分,是建立在详细的个人征信记录上的预测系统。FICO从最开始的用图表画出的评分,到后来演化为logistic regression类的回归算法,用来预测用户在未来一段时间内违约的可能性。近年来,在predictive analytics 方面的发展,deep learning 在supervised learning里面得到了广泛应用。

中国由于在征信方面的数据缺失,需要通过更为自由的模式来创新和跨越式发展。宜信[9]作为国内最大的p2p机构,拥有多年的业务积累,以及一流的风控团队。传统上是通过线下风控的手段,对用户进行详尽的背景调查。收集用户的资料例如他们有的曾提交过信用报告、联系人信息、教育水平、工资单、银行流水等一系列传统征信数据。这样的贷款审核流程耗时较长,贷款申请人往往需要少则几天,多则数月的等待。时间成本过大,流程繁琐,是用户痛点所在,造成了潜在贷款用户的大量流失。提高审核效率,优化贷款流程,把申请人贷款体验做到极致,最终做到极速放贷是大势所趋。到目前,宜信也开始从传统的线下业务,开始往线上做业务拓展,宜信的瞬时贷通过大数据进行实时授信,用户授权系统读取信用卡账单邮箱、电商、运营商相关记录信息,得到有关你性格、消费偏好的个人画像。同时进行交叉验证形成风控机制,进而计算出每一个用户的风险评分,最终判断是否应该放款,以及该用户的授信额度、 还款周期等并最快达到10分钟放款。另外,蚂蚁金服的芝麻信用[10],根据个人淘宝、支付宝等交易数据以及其他授权数据,对个人进行信用评分。芝麻信用综合考虑了个人用户的信用历史,行为偏好,履约能力,身份特质,人脉关系等五个纬度的信息得出的。于此同时,腾讯系的腾讯征信都会考虑到一些信贷之外的一些信息。除了微信支付、QQ钱包绑定的银行卡外,腾讯还能够从更大范围获取数据,比如很多银行都在微信上开通了公众号,向用户发送消费数据;微信的社交状况也能够对个人的资质进行有效的评估。

量化派对用户的信息整合也包括了用户的社交信息,不光包含了用户的画像 (性别、职业、爱好等等),也包含了用户之间的关系。如果说每个人是图中的一个节点,那么人与环境所形成的关系就是两点间的线。当把“点和线”综合起来分析时,我们对个人的性格特征、信用状况、财富属性都会有更深层、更全面的理解。Google 的 PageRank 算法考虑到了web页面的相关性来提高页面的质量,例如权重高的页面指向链接的页面对应的权重相对来说会比较高。类似来说,信贷风险低的用户的常用联系人的小圈子,个人资质的也应该是比较好的。

另一个方面,“信用钱包”需要把用户个性化的需求与信贷产品信息精准匹配到一起。帮助用户找到合适自己的信贷产品,实现信贷消费者和信贷产品提供者的双赢。我们对信贷产品向用户做了基于协同过滤的和基于产品信息匹配的推荐。在对用户做了较为准确的信用评价之后,我们的分发平台(如图三所示)会根据贷款用户的贷款需求来分派给相应的贷款产品,这样就出现了一个客户面对多款信贷产品的情况。我们会根据批贷额度、贷款利率、承诺放款速度等因素在多个信贷产品中选出最适合用户的产品。

图三 分单平台系统

四、美国的风控系统案例

打造一流的风控系统不是光靠数据分析师团队能够做到的,整个风控是需要在公司的DNA里面。美国的Capital One是最早利用大数据分析来判断个人借款还款概率的公司,本文的作者都曾经在Capital One 工作过,并在金融危机发生的时候也在那边,目睹了他是如何发展壮大成第五大银行的。在危机开始的时候,非常果断的把有潜在问题的GreenPoint Mortgage整体出售,并在危机发生的时候,谨慎挑战风险政策来控制风险,并在危机发生的时候以非常低廉的价格收购华盛顿地区的Chevy Chase 银行, ING Direct, HSBC Card北美分部。并完善其Local Banking, Global Lending的策略。

Capital One的风控系统是通过多年的积累和演变而形成的。Capital One 的 Analytics 部门里面分为几个种类,Data Analyst, Business Analyst, Statistician/Modeler. 不仅仅是分析师专注的做模型,做风控来对模型进行大数据分析。所有的决策者,包括商务的总监,运营副总等,所有的决策都会有大量的数据分析,模型策略做支撑。

Capital One在各个业务部门都有很多的决策引擎和模型来支撑。在获取用户时,根据不同的业务线prime, subprime, 汽车金融等,有专门的 customer model,risk model等。在用户关系管理方面,有cross-sell model, customer contact model等。除此还有专门的反欺诈模型,包含identify-fraud model, payment fraud model等等。不同的业务线有着这么多种类的模型,对于这些模型的监管也都是有一套系统的流程的。对于每个模型,模型开发人员会对模型开发写出详细的文档,有着一套类似于code review, unit test的检验机制。公司层面,部门设有专门的中高级别scoring officer (模型官), 负责定期对模型进行监管和监测。除了对于整体模型的效果的监管,整体评分的分布的稳定性;还包括在变量层面的监管,监测模型的重要变量的稳定性。 Capital One 用到的大量征信局的数据和在自身平台上沉淀的用户数据,根据以往的用户的个人行为和违约记录,建立的用户风险决策模型对用户进行评估,模型的效果会比FICO分数高40%以上。

面向个人消费的风控体系的搭建是一个长期的,系统的工程。在中国目前的市场情况,缺失的个人信用风险和高速发展的互联网金融,以及未被满足的普惠金融需求是十分矛盾的。移动互联网时代的到来,对个人风险评估带来了崭新的视角。大数据平台和机器学习的结合能够带来多样化的创新,量化派的使命就是通过这两者的结合来服务互联网金融机构,降低全行业的风险。

  1. 王莹,“央行征信数据单薄 难解P2P风控之渴”,第一财经日报,2014年09月24号
  2. 刘新海,丁伟,“大数据征信应用与启示-以美国互联网金融公司ZestFinance为例”,清华金融评论,2014年10
  3. 杨万国,“量化派:让吊丝一分钟贷10万”,新京报,2015年1月29日
  4. The Apache Software Foundation, http://hadoop.apache.org
  5. UC Berkeley AMP Lab, http://www.tachyon-project.org/index.html
  6. UC Berkeley research project, http://spark.apache.org/document-ation.html
  7. The Apache Software Foundation, http://zookeeper.apache.org
  8. 杜淼淼,“美国个人信用评分系统及其启示”,南方金融,2008年8期
  9. 张小沛,“宜信大数据-大数据金融怎么做”,创业邦,2014年5月
  10. 祝剑禾,马文婷,“蚂蚁金服开评草根信用”,京华时报,2015年1月

关于作者:王倪,量化派联合创始人;于博,量化派大数据架构师 。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 人工智能头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
《大数据时代,全球征信业发展》研究报告
怎么理解征信? 征信的本质:对金融主体的数据刻画 征信是指对企业组织和个人的信用信息进行采集、整理、保存和加工,并向信息使用者提供的活动,其本质在于利用信用信息对金融主体进行数据刻画。 征信的功能:
数据猿
2018/04/19
3K0
《大数据时代,全球征信业发展》研究报告
【金融数据】消费金融:大数据风控那点事?
大数据风控同传统风控在本质上没有区别,主要区别在于风控模型数据输入的纬度和数据关联性分析。据统计,目前银行传统的风控模型对市场上70%的客户是有效的,但是对另外30%的用户,其风控模型有效性将大打折扣。 大数据风控作为传统风控方式补充,主要利用行为数据来实施风险控制,用户行为数据可以作为另外的30%客户风控的有效补充。大数据风险控制的作用就是从原来被拒绝的贷款用户中找到合格用户,识别出已经通过审核的高风险客户和欺诈客户。 一、银行信用风险控制的原理 金融行业中,银行是对信用风险依赖最强的一个主体,银行本质
陆勤_数据人网
2018/02/28
4.1K0
信贷风控模型搭建及核心风控模式分类
一、当前风控模式现状 近年来,信用风险管理发展呈现出数据化、模型化、系统化、自动化和智能化的特点。传统的人工专家经验正逐步被模型与算法替代。 因此,科技较为领先的金融服务公司会选择采用模型方式完成对借款人的自动评估与审批。目前,对于信贷审核来说主要基于的风控模式为IPC、信贷工厂、大数据三种,每一种都有自己不同的侧重点。 二、最核心的风控模式分类 1.IPC模式 IPC模式起源于德国邮储银行,该模式重视实地调查和信息验证,主要通过对客户经理调查走访、信息交叉验证等方面。需要对客户经理进行至少2个月以上的专业技术培训,提升客户经理辨别虚假信息能力和编制财务报表的技能,从而防范信用风险。 IPC公司信贷技术的核心,是评估客户偿还贷款的能力。主要包括三个部分:一是考察借款人偿还贷款的能力,二是衡量借款人偿还贷款的意愿,三是银行内部操作风险的控制。每个部分,IPC都进行了针对性的设计。 这种模式主要运用于数据缺失、不具备财务管理环境、银行流水不完整,信用记录空白等的小微企业,其中,信贷员负责整个过程,从接受客户的申请到信用检查、现场信用、风险评估再到匹配贷款、付款催收和逾期付款。对信贷员的专业技能要求较高,信贷员对贷款全流程把关,一定程度上确保了项目的真实性。但又因为是以信贷员为核心,以信贷员的判断为依据,有一定的操作风险与道德风险。 2.信贷工厂模式 信贷工厂模式是新加坡淡马锡控股公司(Temasek Holdings)为解决小微企业信贷流程的弊端,推出了一种改善小微企业信贷流程的“信贷工厂”模式,“信贷工厂”意指银行像工厂标准化制造产品一样对信贷进行批量处理。 具体而言,就是银行对中小企业贷款的设计、申报、审批、发放、风控等业务按照“流水线”作业方式进行批量操作。在信贷工厂模式下,信贷审批发放首先要做到标准化,每个流程都有确定的人员分工,如客户经理、审批人员和贷后监督人员专业化分工。并且为了监控风险采用产业链调查方法,从不同角度对借贷企业进行交叉印证。 信贷工厂模式的特点是效率高,可以进行量化审核。过程之间环环相扣,对每个环节都有专人把控具体的把控。正因为这样,意味着需要消耗大量的人力成本,每个流程都需要对口的人员做支撑。 3.大数据模式 大数据风控模式是指通过对海量的、多样化的、实时的、有价值的数据进行采集、整理、分析和挖掘,并运用大数据技术重新设计征信评价模型算法,多维度刻画信用主体的“画像”,向信息使用者呈现信用主体的违约率和信用状况。 大数据模式是基于互联网的兴起,该模式利用互联网数据的连通性,对触及到的风险的数据进行筛选,大大减少了人工审核的时间成本,同时也保证了数据结果的真实性。 三、P2P公司个人信贷评分卡模型 我们先讨论下如何从实际业务出发,以怎样的开发流程才能建立一个有效、有用、有价值的模型,希望读后能给你一定的启发。
全栈程序员站长
2022/08/14
2.7K0
【案例】某银行信用卡中心——大数据反欺诈应用案例
数据猿导读 2003年以来我国经济的快速增长,国内信用消费环境的日趋成熟,我国信用卡市场近几年得到了爆炸性的大发展。根据中国银行业协会统计,信用卡欺诈损失排名前三类型为伪卡、虚假身份和互联网欺诈。 本
数据猿
2018/04/19
5.8K0
【案例】某银行信用卡中心——大数据反欺诈应用案例
专访ZRobotCEO乔杨:多数大数据公司既没有数据生产能力,也不具备及时获取数据的能力
专访ZRobotCEO乔杨:多数大数据公司既没有数据生产能力,也不具备及时获取数据的能力
数据猿
2018/04/24
7950
专访ZRobotCEO乔杨:多数大数据公司既没有数据生产能力,也不具备及时获取数据的能力
2017年大数据风控报告
2017年大数据风控报告:金融科技重塑银行风控,大数据反欺诈和信用评分模型助力银行信贷业务。报告分析了大数据在金融风控领域的应用,包括反欺诈、信用评分模型、风险识别等。同时,报告也介绍了国内企业征信市场的发展情况,包括信用评分模型、风险识别等方面的应用。
企鹅号小编
2017/12/25
2.2K0
金融科技&大数据产品推荐:百融信贷决策审批系统
金融科技&大数据产品推荐:百融信贷决策审批系统
数据猿
2018/04/24
2.6K0
金融科技&大数据产品推荐:百融信贷决策审批系统
概述:机器学习和大数据技术在信贷风控场景中的应用
来源:知乎本文约5400字,建议阅读10分钟本文简要概述在当前大数据和机器学习技术如何在信贷风控场景下的常见应用。 似乎一夜之间,所有的互联网公司在对外的宣传稿中都会提及自己使用机器学习和大数据技术,一时间成为了近几年来最炙手可热的名词,不谈机器学习、大数据似乎都不好意思说自己是做高新技术的了。 百度搜索指数:机器学习 百度搜索指数:大数据 上图来自最近7年来这两个词的百度搜索指数,可以看到从2013年开始一直在稳步攀升,在2017年的时候迎来了爆发式的增长,这些都与我们的感知类同。 机器学习与人
数据派THU
2022/03/04
6610
金融科技&大数据产品推荐:蜜蜂+蜜罐报告——基于互联网大数据的风控技术服务平台
金融科技&大数据产品推荐:蜜蜂+蜜罐报告——基于互联网大数据的风控技术服务平台
数据猿
2018/04/19
1.9K0
金融科技&大数据产品推荐:蜜蜂+蜜罐报告——基于互联网大数据的风控技术服务平台
金融科技&大数据产品推荐:享宇金服-智能金融云
金融科技&大数据产品推荐:享宇金服-智能金融云
数据猿
2018/04/19
3.2K0
金融科技&大数据产品推荐:享宇金服-智能金融云
洞察|把社交大数据作个人信贷的风控评估“靠谱”吗?
2016年8月,社交软件Facebook成功申请了这样一项专利:当用户申请贷款时,如果该用户的社交网络上好友的平均信用等级达到了最低信用分要求,贷款才能获得通过。 随着互联网技术与金融不断融合,把社交
灯塔大数据
2018/04/09
1.2K0
洞察|把社交大数据作个人信贷的风控评估“靠谱”吗?
【钱塘号专栏】揭秘互联网金融的大数据风控
大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。 金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。 传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据纬度为十个左右,包含年龄、职业、收入、学历、工
钱塘数据
2018/03/02
1.1K0
【数据分析】大数据征信面临的问题及如何找到突破口
从开展大数据征信业务的三个阶段——数据采集、模型建立、后期应用——来看的话,企业要做好大数据征信在每个阶段其实都有着很大阻碍,一句话来总结这些阻碍那就是中国是一个有特色的国家,照搬国外行不通。典型的如银行有风控模型,但一直没有大规模在全行内使用。简单来说,三个阶段中,大数据征信不得不考虑的问题如下: 数据采集:社交数据适用性;数据够不够多,够不够全;法律问题 模型建立:简单的模型是否可行;模型中融合的变量够不够多;坏账的不可预测性 后期应用:输出结果需要反复验证,不断修改;输出结果是动态的,不能是事后分析数
陆勤_数据人网
2018/02/26
8780
大数据应用于P2P风控领域
一、大数据风控——互联网金融的命脉 近几年,大数据已经撼动了世界的方方面面,从商业科技到医疗、政府、教育、经济、人文以及社会其他各个领域;数据成了有价值的公司资产、重要的经济投入和新型商业模式的基石。 有人曾把大数据比喻成“新时代的石油;业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于生活中的每个角落。试图用数据去解决问题、改善福利,并且促成新的经济繁荣等等。以上这些在互联网金融业尤为突出。 (一)大数据风控已成为互联网金融核心环节 早在1980年,著名未来
小莹莹
2018/04/20
1K0
【钱塘号专栏】BAT、网易、京东等是怎么做大数据风控的?
本文作者:蹲在角落数蝈蝈 大数据风控目前应该是前沿技术在金融领域的最成熟应用,相对于智能投顾、区块链等还在初期的金融科技应用,大数据风控目前已经在业界逐步普及,从BATJ这样的大企业,到交易规模比较大的网贷平台,再到做现金贷、消费金融的创业公司,都在通过大数据风控技术来控制贷款规模扩张中的风险。 现在提到互联网金融、Fintech,首先想到的就是大数据风控。随着网易北斗大数据风控平台的上线,业内包括BAT、网易在内的主要国内互联网巨头都开始在大数据和金融衍生应用领域进入了金融科技化阶段,和互联网金融第一阶
钱塘数据
2018/03/02
1K0
算话征信CEO蒋庆军:只有真正“说话算数”的征信机构才能建立起公信力
数据猿导读 近年来,随着互联网金融行业野蛮生长,各种跑路、欺诈案件层出不穷。因此,越来越多的P2P信贷平台开始重视风险控制,急需第三方征信平台为其提供征信服务,从而有效管控客户信用风险。 记者 | 春
数据猿
2018/04/23
9270
算话征信CEO蒋庆军:只有真正“说话算数”的征信机构才能建立起公信力
风控中的大数据和机器学习
本篇文章只关注个人信用借款的风控。抵押贷,企业贷不在讨论范围中。 ◆ ◆ ◆ 1. 风控的意义 何为风控?字面含义就是对于风险的控制从而使财务不受到损失。对于任何一家金融机构(包括银行,小贷,P2P等)来说,风控的重要性超过流量、体验、品牌这些人们熟悉的指标。风控做得好与坏直接决定了一家公司的生与死,而且其试错成本是无穷大的,往往一旦发现风控出了问题的时候就已经无法挽回了。截止到2015年底,全国总共3000多家P2P平台里超过三分之一已经倒闭。这其中除了一部分明显的自融欺诈外,大多数平台垮掉的原因还是风
大数据文摘
2018/05/24
9910
跑路、欺诈风波不断,大数据风控威力何在?
数据猿导读 在目前的互联网金融市场上,有60%的损失来自于欺诈,这60%里面又有80%—90%属于集团欺诈。因此,风险控制就成为互联网金融发展的必要基础。而在实施风控过程中,其核心在于如何通过大数据以
数据猿
2018/04/23
1K0
跑路、欺诈风波不断,大数据风控威力何在?
聚信立创始人兼CEO罗皓:新金融公司60%的损失是被骗走,大数据风控成互金领域“定心丸”
聚信立创始人兼CEO罗皓在会上表示,随着政策的开放,国民消费习惯的改变以及金融机构的不断涌现,这给大数据风控提供契机的同时也伴随着大挑战,比如:如何满足这些没有信用记录的新型消费者并对其进行风险控制
数据猿
2018/04/19
8610
聚信立创始人兼CEO罗皓:新金融公司60%的损失是被骗走,大数据风控成互金领域“定心丸”
【案例】京东金融——消费金融,一场未来大数据风控的盛宴
数据猿导读 2014年2月,京东金融推出消费金融产品-京东白条,其主要目标人群以年轻人群为主,用户购物时通过“白条”的方式实现分期支付,且无需任何抵押物,授信额度最高为1.5w元,分期时间从3-24个
数据猿
2018/04/19
3.5K0
【案例】京东金融——消费金融,一场未来大数据风控的盛宴
推荐阅读
相关推荐
《大数据时代,全球征信业发展》研究报告
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档