前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >不只是支持Windows, PyTorch 0.4新版本变动详解与升级指南

不只是支持Windows, PyTorch 0.4新版本变动详解与升级指南

作者头像
WZEARW
发布2018-06-05 16:41:07
1.4K0
发布2018-06-05 16:41:07
举报
文章被收录于专栏:专知

【导读】今天大家比较关心的是PyTorch在GitHub发布0.4.0版本,专知成员Huaiwen详细讲解了PyTorch新版本的变动信息, 本次升级, 只做了一件事情, 就是把Tensor 类和 Variable 类 合并了, 且官方同时更新了API和Tutorials, 可以肯定, 以后的人不会再学0.3.1。专知成员Huaiwen也计划于今日更新一个系列的新版PyTorch简单上手, 希望大家持续关注。

专知成员Huaiwen以前推出一系列PyTorch教程:

【教程】专知-PyTorch手把手深度学习教程系列完整版

【干货】深度学习实验流程及PyTorch提供的解决方案

【干货】对抗自编码器PyTorch手把手实战系列

PyTorch 终于从0.3.1升级到0.4.0了, 首先引入眼帘的,是PyTorch官方对自己的描述的巨大变化.

PyTorch 0.3.1说:

PyTorch is a python package that provides two high-level features:

Tensor computation (like numpy) with strong GPU acceleration

Deep Neural Networks built on a tape-based autodiff system

而PyTorch 0.4.0说:

PyTorch is a python based scientific computing package targeted at two sets of audiences:

• A replacement for NumPy to use the power of GPUs

• a deep learning research platform that provides maximum flexibility and speed

显然, 不断提升的功能和不断发展的社区, 给了PyTorch充足的底气.

本次升级, 只做了一件事情, 就是将Tensor 类和 Variable 类 合并, 这一合并, 解决掉了很多原来令人困扰的问题.

在旧版本, Variable和Tensor分离, Tensor主要是多维矩阵的封装, 而Variable类是计算图上的节点, 它对Tensor进行了进一步的封装.

所以, 在训练过程中, 一个必要的步骤就是, 把Tensor转成Variable以便在模型中运行; 运行完之后, 我们还要将Variable转成Tensor,甚至Numpy. 我们在写代码和读代码的时候, 看到了各种辅助函数, 比如下面就是我常用的辅助函数:

代码语言:javascript
复制
# 旧版本实现
import torch

# 从Tensor转换到Vairable
def to_var(x):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x)  
  
# 从CUDA Variable转换到Numpy
def to_np(x):
    return x.data.cpu().numpy()
     
for epoch in range(3):   # 训练3轮
   for step, (batch_x, batch_y) in enumerate(loader):  # 每一步
      # 把训练数据转成Variable
      batch_x, batch_y = to_var(batch_x), to_var(batch_y)
      pass

0.4.0, 我们就可以不用这么转化了

代码语言:javascript
复制
for epoch in range(3):   # 训练3轮
   for step, (batch_x, batch_y) in enumerate(loader):  # 每一步
       optimizer.zero_grad()
          # forward + backward + optimize
       outputs = net(batch_x)
       loss = criterion(outputs, batch_y)
       loss.backward()
       optimizer.step()

print('Finished Training')

好处当然很大, 但是我们更关心以下几个问题:

Variable没了, Variable 的功能怎么办?

1.requires_grad 标志怎么处理了?

requires_grad 在Variable中,用来标志一个Variable是否要求导(或者说,要不要放到计算图中), 合并之后,这个标志处理的?

2.volatile 标志怎么处理了?

volatile在Variable中,用来标志一个Variable是否要被计算图隔离出去, 合并之后, 这个标志怎么处理的?

3.data方法呢?

Variable中,都是将封装的Tensor数据存储在.data里, 现在Variable和Tensor合并了, .data怎么办?

4.张量和标量怎么统一?

在Tensor元素内部都是Python 标量类型, 而Variable都是Tensor 张量类型, 原本它们井水不犯河水, 但现在合并了, 怎么处理?

代码语言:javascript
复制
# 旧版 0.3.1
>>> import torch
>>> from torch.autograd import Variable
>>> a = torch.Tensor([1,2,3])
>>> a[0]  # 内部元素是Python 标量
1.0
>>> type(a[0]) # 类别是Python float
<class 'float'>
>>> b = Variable(a)
>>> b[0] # 内部元素是Tensor类型, 张量
Variable containing:
 1
[torch.FloatTensor of size 1]

合并之后的Tensor是什么样的?

5.合并之后, 新版本Tensor是什么类型?

回答如下

1

requires_grad 标志怎么处理了?

直接挂在Tensor类下

代码语言:javascript
复制
>>> import torch
>>> x = torch.ones(1)  
>>> x.requires_grad
False

2

volatile 标志怎么处理了?

弃用 , 但是做了一些替代, 比如torch.no_grad(), torch.set_grad_enabled(grad_mode)

代码语言:javascript
复制
>>> import torch
>>> x = torch.zeros(1, requires_grad=True)
>>> with torch.no_grad(): # 将y 从计算图中排除
...     y = x * 2
>>> y.requires_grad
False

3

data方法呢?

保留功能, 但建议替代为x.detach()

.data方法,本质上是给当前Tensor加一个新引用, 它们指向的内存都是一样的, 因此不安全 。

比如y = x.data(), 而x参与了计算图的运算, 那么, 如果你不小心修改了y的data, x的data也会跟着变, 然而反向传播是监听不到x的data变化的, 因此造成梯度计算错误。

y = x.detach()正如其名, 将返回一个不参与计算图的Tensor y, Tensor y 一旦试图改变修改自己的data, 会被语法检查和python解释器监测到, 并抛出错误.

4

张量和标量怎么统一?

新增0维张量(0-dimensional Tensor), 用以封装标量(scalar), 将张量(Tensor), 标量(Scalar)都统一成张量.

代码语言:javascript
复制
>>> import torch
>>> torch.tensor(3.1416)         # 创建标量
tensor(3.1416)
>>> torch.tensor(3.1416).size()  # 其实是0维的张量
torch.Size([])
>>> torch.tensor([3]).size()     # 1维张量
torch.Size([1])

5

合并之后, 新版本Tensor是什么类型?

torch.Tensor类型, 但是, 详细类型需要进一步调用方法:

代码语言:javascript
复制
>>> import torch
>>> x = torch.DoubleTensor([1, 1, 1])
>>> type(x)  
<class 'torch.Tensor'>
>>> x.type() 
'torch.DoubleTensor'
>>> isinstance(x, torch.DoubleTensor)
True

旧版本的PyTorch, 你可以在类型上直接看出一个Tensor的基本信息, 比如device在cuda上, layout是sparse,dtype是Float型的Tensor, 你可以:

代码语言:javascript
复制
# 0.3.1
>>> type(a)
<class 'torch.cuda.sparse.FloatTensor'>

由新版本, 所有的Tensor对外都是torch.Tensor类型, 上述的属性, 从类名转移到了Tensor的属性了.

• torch.device, 描述设备的位置, 比如torch.device('cuda'), torch.device('cpu')

代码语言:javascript
复制
>>> import torch
>>> cuda = torch.device('cuda') 
>>> cpu  = torch.device('cpu')
>>> a = torch.tensor([1,2,3], device=cuda)
>>> a.device
device(type='cuda', index=0)
>>> b = a.to(cpu) # 将数据从cuda copy 到 cpu
>>> b.device
device(type='cpu')
>>> type(a)  # type a 和 tpye b, 看不出谁在cuda谁在cpu
<class 'torch.Tensor'>
>>> type(b)
<class 'torch.Tensor'>

• torch.layout

torch.layout 是 一个表示Tensor数据在内存中样子的类, 默认torch.strided, 即稠密的存储在内存上, 靠stride来刻画tensor的维度. 目前还有一个实验版的对象torch.sparse_coo, 一种coo格式的稀疏存储方式, 但是目前API还不固定, 大家谨慎使用.

• torch.dtype

后续

回答完上述疑问, 我们也对新版本的PyTorch有了新的认识, 由于去除了Variable类, 且官方同时更新了API和Tutorials, 我们可以肯定, 以后的人不会再学0.3.1. 我计划于近日更新一个系列的新版PyTorch简单上手, 希望大家持续关注。

GitHub 发布地址:https://github.com/pytorch/pytorch/releases

PyTorch 官网:http://pytorch.org/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 专知 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档