前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python 爬虫实践:《战狼2》豆瓣影评分析

Python 爬虫实践:《战狼2》豆瓣影评分析

作者头像
数据科学社区
发布于 2018-06-11 06:48:59
发布于 2018-06-11 06:48:59
7220
举报
文章被收录于专栏:大数据杂谈大数据杂谈

本文作者:hang 本文来源:https://segmentfault.com/a/1190000010473819

简介

刚接触python不久,做一个小项目来练练手。前几天看了《战狼2》,发现它在最新上映的电影里面是排行第一的,如下图所示。准备把豆瓣上对它的影评做一个分析。

目标总览

主要做了三件事:

  • 抓取网页数据
  • 清理数据
  • 用词云进行展示

使用的python版本是3.5.

一、抓取网页数据

第一步要对网页进行访问,python中使用的是urllib库。代码如下:

from urllib import request resp = request.urlopen('https://movie.douban.com/nowplaying/hangzhou/') html_data = resp.read().decode('utf-8')

其中https://movie.douban.com/nowplaying/hangzhou/是豆瓣最新上映的电影页面,可以在浏览器中输入该网址进行查看。

html_data是字符串类型的变量,里面存放了网页的html代码。

输入print(html_data)可以查看,如下图所示:

第二步,需要对得到的html代码进行解析,得到里面提取我们需要的数据。

在python中使用BeautifulSoup库进行html代码的解析。

(注:如果没有安装此库,则使用pip install BeautifulSoup进行安装即可!)

BeautifulSoup使用的格式如下:

BeautifulSoup(html,"html.parser")

第一个参数为需要提取数据的html,第二个参数是指定解析器,然后使用find_all()读取html标签中的内容。

但是html中有这么多的标签,该读取哪些标签呢?其实,最简单的办法是我们可以打开我们爬取网页的html代码,然后查看我们需要的数据在哪个html标签里面,再进行读取就可以了。如下图所示:

从上图中可以看出在div id=”nowplaying“标签开始是我们想要的数据,里面有电影的名称、评分、主演等信息。所以相应的代码编写如下:

from bs4 import BeautifulSoup as bs soup = bs(html_data, 'html.parser') nowplaying_movie = soup.find_all('div', id='nowplaying') nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item')

其中nowplaying_movie_list 是一个列表,可以用print(nowplaying_movie_list[0])查看里面的内容,如下图所示:

在上图中可以看到data-subject属性里面放了电影的id号码,而在img标签的alt属性里面放了电影的名字,因此我们就通过这两个属性来得到电影的id和名称。(注:打开电影短评的网页时需要用到电影的id,所以需要对它进行解析),编写代码如下:

nowplaying_list = [] for item in nowplaying_movie_list: nowplaying_dict = {} nowplaying_dict['id'] = item['data-subject'] for tag_img_item in item.find_all('img'): nowplaying_dict['name'] = tag_img_item['alt'] nowplaying_list.append(nowplaying_dict)

其中列表nowplaying_list中就存放了最新电影的id和名称,可以使用print(nowplaying_list)进行查看,如下图所示:

可以看到和豆瓣网址上面是匹配的。这样就得到了最新电影的信息了。接下来就要进行对最新电影短评进行分析了。例如《战狼2》的短评网址为:https://movie.douban.com/subject/26363254/comments?start=0&limit=20

其中26363254就是电影的id,start=0表示评论的第0条评论。

接下来接对该网址进行解析了。打开上图中的短评页面的html代码,我们发现关于评论的数据是在div标签的comment属性下面,如下图所示:

因此对此标签进行解析,代码如下:

requrl = 'https://movie.douban.com/subject/' + nowplaying_list[0]['id'] + '/comments' +'?' +'start=0' + '&limit=20' resp = request.urlopen(requrl) html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') comment_div_lits = soup.find_all('div', class_='comment')

此时在comment_div_lits 列表中存放的就是div标签和comment属性下面的html代码了。在上图中还可以发现在p标签下面存放了网友对电影的评论,如下图所示:

因此对comment_div_lits 代码中的html代码继续进行解析,代码如下:

eachCommentList = []; for item in comment_div_lits: if item.find_all('p')[0].string is not None: eachCommentList.append(item.find_all('p')[0].string)

使用print(eachCommentList)查看eachCommentList列表中的内容,可以看到里面存里我们想要的影评。如下图所示:

好的,至此我们已经爬取了豆瓣最近播放电影的评论数据,接下来就要对数据进行清洗和词云显示了。

二、数据清洗

为了方便进行数据进行清洗,我们将列表中的数据放在一个字符串数组中,代码如下:

comments = '' for k in range(len(eachCommentList)): comments = comments + (str(eachCommentList[k])).strip()

使用print(comments)进行查看,如下图所示:

可以看到所有的评论已经变成一个字符串了,但是我们发现评论中还有不少的标点符号等。这些符号对我们进行词频统计时根本没有用,因此要将它们清除。所用的方法是正则表达式。python中正则表达式是通过re模块来实现的。代码如下:

import re pattern = re.compile(r'[\u4e00-\u9fa5]+') filterdata = re.findall(pattern, comments) cleaned_comments = ''.join(filterdata)

继续使用print(cleaned_comments)语句进行查看,如下图所示:

我们可以看到此时评论数据中已经没有那些标点符号了,数据变得“干净”了很多。

因此要进行词频统计,所以先要进行中文分词操作。在这里我使用的是结巴分词。如果没有安装结巴分词,可以在控制台使用pip install jieba进行安装。(注:可以使用pip list查看是否安装了这些库)。代码如下所示:

import jieba #分词包 import pandas as pd segment = jieba.lcut(cleaned_comments) words_df=pd.DataFrame({'segment':segment})

因为结巴分词要用到pandas,所以我们这里加载了pandas包。可以使用words_df.head()查看分词之后的结果,如下图所示:

从上图可以看到我们的数据中有“看”、“太”、“的”等虚词(停用词),而这些词在任何场景中都是高频时,并且没有实际的含义,所以我们要他们进行清除。

我把停用词放在一个stopwords.txt文件中,将我们的数据与停用词进行比对即可(注:只要在百度中输入stopwords.txt,就可以下载到该文件)。去停用词代码如下代码如下:

stopwords=pd.read_csv("stopwords.txt",index_col=False,quoting=3,sep="\t",names=['stopword'], encoding='utf-8')#quoting=3全不引用 words_df=words_df[~words_df.segment.isin(stopwords.stopword)]

继续使用words_df.head()语句来查看结果,如下图所示,停用词已经被出去了。

接下来就要进行词频统计了,代码如下:

import numpy #numpy计算包 words_stat=words_df.groupby(by=['segment'])['segment'].agg({"计数":numpy.size}) words_stat=words_stat.reset_index().sort_values(by=["计数"],ascending=False)

用words_stat.head()进行查看,结果如下:

由于我们前面只是爬取了第一页的评论,所以数据有点少,在最后给出的完整代码中,我爬取了10页的评论,所数据还是有参考价值。

三、用词云进行显示

代码如下:

import matplotlib.pyplot as plt %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (10.0, 5.0) from wordcloud import WordCloud#词云包 wordcloud=WordCloud(font_path="simhei.ttf",background_color="white",max_font_size=80) #指定字体类型、字体大小和字体颜色 word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} word_frequence_list = [] for key in word_frequence: temp = (key,word_frequence[key]) word_frequence_list.append(temp) wordcloud=wordcloud.fit_words(word_frequence_list) plt.imshow(wordcloud)

其中simhei.ttf使用来指定字体的,可以在百度上输入simhei.ttf进行下载后,放入程序的根目录即可。显示的图像如下:

到此为止,整个项目的介绍就结束了。由于自己也还是个初学者,接触python不久,代码写的并不好。而且第一次写技术博客,表达的有些冗余,请大家多多包涵,有不对的地方,请大家批评指正。以后我也会将自己做的小项目以这种形式写在博客上和大家一起交流!最后贴上完整的代码。

完整代码

#coding:utf-8 __author__ = 'hang' import warnings warnings.filterwarnings("ignore") import jieba #分词包 import numpy #numpy计算包 import codecs #codecs提供的open方法来指定打开的文件的语言编码,它会在读取的时候自动转换为内部unicode import re import pandas as pd import matplotlib.pyplot as plt from urllib import request from bs4 import BeautifulSoup as bs %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (10.0, 5.0) from wordcloud import WordCloud#词云包 #分析网页函数 def getNowPlayingMovie_list(): resp = request.urlopen('https://movie.douban.com/nowplaying/hangzhou/') html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') nowplaying_movie = soup.find_all('div', id='nowplaying') nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item') nowplaying_list = [] for item in nowplaying_movie_list: nowplaying_dict = {} nowplaying_dict['id'] = item['data-subject'] for tag_img_item in item.find_all('img'): nowplaying_dict['name'] = tag_img_item['alt'] nowplaying_list.append(nowplaying_dict) return nowplaying_list #爬取评论函数 def getCommentsById(movieId, pageNum): eachCommentList = []; if pageNum>0: start = (pageNum-1) * 20 else: return False requrl = 'https://movie.douban.com/subject/' + movieId + '/comments' +'?' +'start=' + str(start) + '&limit=20' print(requrl) resp = request.urlopen(requrl) html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') comment_div_lits = soup.find_all('div', class_='comment') for item in comment_div_lits: if item.find_all('p')[0].string is not None: eachCommentList.append(item.find_all('p')[0].string) return eachCommentList def main(): #循环获取第一个电影的前10页评论 commentList = [] NowPlayingMovie_list = getNowPlayingMovie_list() for i in range(10): num = i + 1 commentList_temp = getCommentsById(NowPlayingMovie_list[0]['id'], num) commentList.append(commentList_temp) #将列表中的数据转换为字符串 comments = '' for k in range(len(commentList)): comments = comments + (str(commentList[k])).strip() #使用正则表达式去除标点符号 pattern = re.compile(r'[\u4e00-\u9fa5]+') filterdata = re.findall(pattern, comments) cleaned_comments = ''.join(filterdata) #使用结巴分词进行中文分词 segment = jieba.lcut(cleaned_comments) words_df=pd.DataFrame({'segment':segment}) #去掉停用词 stopwords=pd.read_csv("stopwords.txt",index_col=False,quoting=3,sep="\t",names=['stopword'], encoding='utf-8')#quoting=3全不引用 words_df=words_df[~words_df.segment.isin(stopwords.stopword)] #统计词频 words_stat=words_df.groupby(by=['segment'])['segment'].agg({"计数":numpy.size}) words_stat=words_stat.reset_index().sort_values(by=["计数"],ascending=False) #用词云进行显示 wordcloud=WordCloud(font_path="simhei.ttf",background_color="white",max_font_size=80) word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} word_frequence_list = [] for key in word_frequence: temp = (key,word_frequence[key]) word_frequence_list.append(temp) wordcloud=wordcloud.fit_words(word_frequence_list) plt.imshow(wordcloud) #主函数 main()

结果显示如下:

上图基本反映了《战狼2》这部电影的情况。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据杂谈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Python数据可视化:啥是佩奇
网址:http://comment.bilibili.com/72036817.xml
小F
2020/10/09
3510
Python数据可视化:啥是佩奇
开发 | 我做了12万条的影评分析,告诉你《战狼Ⅱ》都在说些啥
本文原作者麦艳涛。本文原载于知乎专栏。 截止到8月15日,《战狼Ⅱ》上映的第19天,票房已超45亿人民币。 真正成为唯一一部挺进世界影史票房前100名的亚洲电影。 抛开爆炸的票房不说,电影还激起了观众各种情绪,甚至有人放狠话说:敢喷《战狼Ⅱ》的,要么是智障,要么是公敌,就是这么简单粗暴。 尽管各路评论出街,媒体闹得沸沸扬扬,观众还是傻傻分不清楚哪边意见比较靠谱。 本文通过Python爬虫的方式获取数据,对豆瓣电影评论进行分析,制作了豆瓣影评的云图。 现在,让我们来看看,《战狼Ⅱ》评论里到底藏着哪些有趣的潜台
AI科技评论
2018/03/13
6770
开发 | 我做了12万条的影评分析,告诉你《战狼Ⅱ》都在说些啥
爬取bilibili的弹幕制作词云
爬取哔哩哔哩的弹幕,http://comment.bilibili.com/6315651.xml
andrew_a
2019/07/30
9900
爬取bilibili的弹幕制作词云
乱炖“简书交友”数据之代码
上一篇文章乱炖数据之2700余篇“简书交友”专题文章数据的花式玩法发布后,不少人想学习下代码,由于此前不曾在GitHub上开源过,流程还不熟悉,再者本项目中很多尝试性的代码,异常杂乱,因而没有立马公开。在经过删减和整理后,将继续更新出来。
古柳_DesertsX
2018/08/21
6230
乱炖“简书交友”数据之代码
Python爬虫之六:智联招聘进阶版
运行平台: Windows Python版本: Python3.6 IDE: Sublime Text 其他工具: Chrome浏览器
王强
2018/08/09
1.2K0
Python爬虫之六:智联招聘进阶版
Python3.6+jieba+wordcloud 爬取豆瓣影评生成词云
在上一篇介绍了如何通过Python爬虫抓取豆瓣电影榜单。Python3.6+Beautiful Soup+csv 爬取豆瓣电影Top250 此篇博客主要抓取豆瓣某个电影的影评,利用jieba分词和w
geekfly
2022/04/24
7050
Python3.6+jieba+wordcloud 爬取豆瓣影评生成词云
女神还是女神~
在春节假期追了一个电视剧"完美伴侣",女神"高圆圆"领衔主演,大概有45集,给我的感觉整体剧情还行,女神演技和颜值依然在线.
测试加
2022/03/24
3180
女神还是女神~
使用Python爬取豆瓣电影影评:从数据收集到情感分析
在当今数字化时代,对电影的评价和反馈在很大程度上影响着人们的选择。豆瓣作为一个知名的电影评价平台,汇集了大量用户对电影的评论和评分。本文将介绍如何使用Python编写爬虫来获取豆瓣电影的影评数据,并通过情感分析对评论进行简单的情感评价。
霍格沃兹测试开发Muller老师
2024/03/19
6971
行业|我用Python爬了12万条影评,告诉你《战狼Ⅱ》都在说些啥
截止到 8 月 20 日,《战狼Ⅱ》上映的第 25 天,它的票房已超 50 亿人民币,真正成为唯一一部挺进世界影史票房前 100 名的亚洲电影。
fishexpert
2018/11/21
6410
用Python更加了解微信好友
运行平台: Windows Python版本: Python3.6 IDE: Sublime Text
王强
2018/08/09
1.1K0
用Python更加了解微信好友
爬取《哪吒》豆瓣短评,我得到了什么?
豆瓣从2017.10月开始全面禁止爬取数据,仅仅开放500条数据,白天1分钟最多可以爬取40次,晚上一分钟可爬取60次数,超过此次数则会封禁IP地址。
小小詹同学
2019/08/20
8730
哪吒票房超复联4,100行python代码抓取豆瓣短评,看看网友怎么说
这次是用python登录并爬取豆瓣短评,并做词云分布,分别用到requests、xpath、lxml、jieba、wordcloud等python库。
Python进阶者
2019/09/24
5760
哪吒票房超复联4,100行python代码抓取豆瓣短评,看看网友怎么说
用python实现一个豆瓣通用爬虫(登陆、爬取、可视化分析)
在本人上的一门课中,老师对每个小组有个任务要求,介绍和完成一个小模块、工具知识的使用。然而我所在的组刚好遇到的是python爬虫的小课题。
bigsai
2020/11/03
2.7K0
用python实现一个豆瓣通用爬虫(登陆、爬取、可视化分析)
爬取了《默杀》48240条豆瓣影评,真的有这么烂吗?!
大家好,我是老表。最近几周《默杀》很火,在各种短视频平台经常刷到宣传片,看着那种校园霸凌咬牙切齿,看到最后反转又喜笑颜开,准备周末去电影院看看,犒劳犒劳帮我上了一周班的身体和大脑,而且我看猫眼上评分也很高,票房也不错,更感兴趣了。
老表
2024/07/31
8030
爬取了《默杀》48240条豆瓣影评,真的有这么烂吗?!
【Python3爬虫】你会怎么评价复仇者
最近复仇者联盟4正在热映中,很多人都去电影院观看了电影,那么对于这部电影,看过的人都是怎么评价的呢?这时候爬虫就可以派上用场了!
py3study
2020/01/16
4960
Python selenium爬取影评生成词云图
运行命令 pip install selenium jieba wordcloud matplotlib numpy 进行下载
全栈若城
2024/02/29
2380
Python selenium爬取影评生成词云图
相关行业发展趋势写一个爬虫程序
前两篇我利用爬虫进行营销推广,并且写了一个品牌口碑爬虫的代码示例。现在根据转向行业发展趋势,可能是希望收集数据来分析市场动向、竞争对手动态或者新兴技术趋势。
华科云商小徐
2025/05/14
1200
用 Python 了解一下最炫国漫《雾山五行》
看动漫的小伙伴应该知道最近出了一部神漫《雾山五行》,其以极具特色的水墨画风和超燃的打斗场面广受好评,首集播出不到 24 小时登顶 B 站热搜第一,豆瓣开分 9.5,火爆程度可见一斑,就打斗场面而言,说是最炫动漫也不为过,当然唯一有一点不足之处就是集数有点少,只有 3 集。
Python小二
2020/08/17
6270
拿来就用能的Python词云图代码|wordcloud生成词云详解
词云也叫文字云,是一种可视化的结果呈现,常用在爬虫数据分析中,原理就是统计文本中高频出现的词,过滤掉某些干扰词,将结果生成一张图片,直观的获取数据的重点信息。今天,我们就来学习一下Python生成词云的常用库「wordcloud」。
吾非同
2021/03/12
4.9K0
Python 分析电影《南方车站的聚会》
《南方车站的聚会》由刁亦男执导,主要演员包括:胡歌、桂纶镁、廖凡、万茜等,该片于 2019 年 5 月 18 在戛纳电影节首映,2019 年 12 月 6 日在中国正式上映。故事灵感来自真实新闻事件,主要讲述盗窃团伙头目周泽农(胡歌饰),在重金悬赏下走上逃亡之路,艰难寻求自我救赎的故事。
Python小二
2020/08/18
6660
Python 分析电影《南方车站的聚会》
推荐阅读
相关推荐
Python数据可视化:啥是佩奇
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档