前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Learning From Data Note 1

Learning From Data Note 1

作者头像
Sheepy
发布2018-09-10 12:25:52
3450
发布2018-09-10 12:25:52
举报
文章被收录于专栏:我杨某人的青春满是悔恨

周末上了一节 Yaser网上公开课,教授的发音虽然有点奇怪,但是为人风趣,循循善诱,课程内容也是深入浅出,既有干货又不至于太过枯燥乏味。看完之后记了一点笔记,记录于此,希望自己能学完这套课程。(因为是英文课程,就直接记英文了,也算练习下英文)

The Learning Problem

The essence of machine learning (three components)

  • A pattern exists
  • We cannot pin it down mathematically
  • We have data on it

Formalization

  • Intput: x
  • Output: y
  • Target function: f : X -> Y
  • Data: (x1 y1), (x2, y2), ... , (xn, yn) (historical records)
  • Hypothesis: g : X -> Y (final hypothesis is the trained model, g is close to f)

Learning Model

learning model = hypothesis set + learning algorithm

How does it work

learning-paradigm.png

Perceptron Learning Algorithm (PLA)

  • The perception implements: h(X) = sign(w * x)
  • Given the training data: (x1, y1), (x2, y2), ... , (xn, yn)
  • pick a misclassified point: sign(W * Xn) != yn
  • and update the weight vector: w <- w + xn * yn (yn = (-1, 1), so w <- w +/- xn)

Types of learning

Basic premise of learning

"using a set of observations to uncover an underlying process" -- broad premise that be applied in many disciplines

  • Supervised learning: See above
  • Unsupervised learning: Instead of (input, correct output), we get (input, ?). Cluster is one of them.
  • Reinforcement learning: Instead of (input, correct output), we get (input, some output, grade for this output). It does not give you the output directly, but when you choose an output, it will tell you how well you're doing. It is interesting because it is mostly our own experience in learning. The most important application of reinforcement learning is in playing games. (like Alpha Go?)

A Learning puzzle

The target function is unknown, it could be anything. We have a finite sample, it can be anything outside.

Finally

I'm new in machine learning and my English is not good enough. So please talk to me if there are any mistakes.

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017.08.13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • The Learning Problem
    • The essence of machine learning (three components)
      • Formalization
        • Learning Model
          • How does it work
            • Perceptron Learning Algorithm (PLA)
              • Types of learning
                • Basic premise of learning
              • A Learning puzzle
                • Finally
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档