前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Tensorflow常见模型及工程化方法

Tensorflow常见模型及工程化方法

作者头像
CodeInHand
发布2018-12-11 10:48:25
1.1K0
发布2018-12-11 10:48:25
举报
文章被收录于专栏:Pytorch实践

Tensorflow在深度学习模型研究中起到了很大的促进作用,灵活的框架免去了研究人员、开发者大量的自动求导代码工作。本文总结一下常用的模型代码和工程化需要的代码。有需求的同学收藏一下,以便日后查阅。

Tensorflow常见模型

A. LSTM模型结构

import tensorflow as tf

import tensorflow.contrib as contrib

from tensorflow.python.ops import array_ops

class lstm(object):

def __init__(self, in_data, hidden_dim, batch_seqlen=None, flag='concat'):

self.in_data = in_data

self.hidden_dim = hidden_dim

self.batch_seqlen = batch_seqlen

self.flag = flag

lstm_cell = contrib.rnn.LSTMCell(self.hidden_dim)

out, _ = tf.nn.dynamic_rnn(cell=lstm_cell, inputs=self.in_data, sequence_length=self.batch_seqlen,dtype=tf.float32)

if flag=='all_ht':

self.out = out

if flag = 'first_ht':

self.out = out[:,0,:]

if flag = 'last_ht':

self.out = out[:,-1,:]

if flag = 'concat':

self.out = tf.concat([out[:,0,:], out[:,-1,:]],1)

B. Bi-LSTM模型结构

import tensorflow as tf

import tensorflow.contrib as contrib

from tensorflow.python.ops import array_ops

from tensorflow.python.framework import dtypes

class bilstm(object):

def __init__(self, in_data, hidden_dim, batch_seqlen=None, flag='concat'):

self.in_data = in_data

self.hidden_dim = hidden_dim

self.batch_seqlen = batch_seqlen

self.flag = flag

lstm_cell_fw = contrib.rnn.LSTMCell(self.hidden_dim)

lstm_cell_bw = contrib.rnn.LSTMCell(self.hidden_dim)

out, state = tf.nn.bidirectional_dynamic_rnn(cell_fw=lstm_cell_fw,cell_bw=lstm_cell_bw,inputs=self.in_data, sequence_lenth=self.batch_seqlen,dtype=tf.float32)

bi_out = tf.concat(out, 2)

if flag=='all_ht':

self.out = bi_out

if flag=='first_ht':

self.out = bi_out[:,0,:]

if flag=='last_ht':

self.out = tf.concat([state[0].h,state[1].h], 1)

if flag=='concat':

self.out = tf.concat([bi_out[:,0,:],tf.concat([state[0].h,state[1].h], 1)],1)

C multi-channel CNN

import tensorflow as tf

import tensorflow.contrib as contrib

from tensorflow.python.ops import array_ops

class lstm(object):

def __init__(self, in_data, hidden_dim, batch_seqlen=None, flag='concat'):

self.in_data = in_data

self.hidden_dim = hidden_dim

self.batch_seqlen = batch_seqlen

self.flag = flag

lstm_cell = contrib.rnn.LSTMCell(self.hidden_dim)

out, _ = tf.nn.dynamic_rnn(cell=lstm_cell, inputs=self.in_data, sequence_length=self.batch_seqlen,dtype=tf.float32)

if flag=='all_ht':

self.out = out

if flag = 'first_ht':

self.out = out[:,0,:]

if flag = 'last_ht':

self.out = out[:,-1,:]

if flag = 'concat':

self.out = tf.concat([out[:,0,:], out[:,-1,:]],1)

D depth-wise cnn

import tensorflow as tf

def depth_wise_conv(in_data, scope, kernel_size, dim):

with tf.variable_scope(scope):

shapes = in_data.shape.as_list()

depthwise_filter = tf.get_varibale("depthwise_conv.weight",

(kernel_size[0], kernel_size[1], shapes[-1]

dtype=tf.float32, )

pointwise_filter = tf.get_variable("pointwise_conv.weight",

(1,1, shapes[-1], dim),

dtype=tf.float32, )

outputs = tf.nn.separable_conv2d(in_data,

depthwise_filter,

pointwise_filter,

strides=(1,1,1,1),

padding="SAME"

)

return outputs

D multi-layer depth-wise cnn

def multi_convs(input_x, dim, conv_number=2, k=5):

# input_x: 输入数据,为batch * seq * dim

# dim:对应的输入的维度

# conv_number: 对应的卷积的层数,一般2,

# k对应的是卷积核的窗口大小

res = input_x

for index in range(conv_number):

out = norm(res) # layer norm

out = tf.expand_dims(out, 2) # bach * seq * 1 * dim

out = depth_wise_conv(out, kernel_size=(k, 1), dim=dim, scope="convs.%d" % index)

out = tf.squeeze(out, 2) # batch * seq * dim

out = tf.nn.relu(out)

out = out + res

res = out

out = norm(out) # 输出为 batch * seq * 1 * dim

out = tf.squeeze(out, squeeze_dims=2) # 输出为 batch * seq * dim

return out

模型参数查看

已知模型文件的ckpt文件,通过pywrap_tensorflow获取模型的各参数名。

import tensoflow as tf

from tensorflow.python import pywrap_tensorflow

model_dir = "./ckpt/"

ckpt = tf.train.get_checkpoint_state(model_dir)

ckpt_path = ckpt.model_checkpoint_path

reader = pywrap_tensorflow.NewCheckpointReader(ckpt_path)

param_dict = reader.get_variable_to_shape_map()

for key, val in param_dict.items():

try:

print key, val

except:

pass

工程化方法

A. tennsorflow模型文件打包成PB文件

import tensorflow as tf

from tensorflow.python.tools import freeze_graph

with tf.Graph().as_default():

with tf.device("/cpu:0"):

config = tf.ConfigProto(allow_soft_placement=True)

with tf.Session(config=config).as_default() as sess:

model = Your_Model_Name()

model.build_graph()

sess.run(tf.initialize_all_variables())

saver = tf.train.Saver()

ckpt_path = "/your/model/path"

saver.restore(sess, ckpt_path)

graphdef = tf.get_default_graph().as_graph_def()

tf.train.write_graph(sess.graph_def,"/your/save/path/","save_name.pb",as_text=False)

frozen_graph = tf.graph_util.convert_variables_to_constants(sess,graphdef,['output/node/name'])

frozen_graph_trim = tf.graph_util.remove_training_nodes(frozen_graph)

freeze_graph.freeze_graph('/your/save/path/save_name.pb','',True, ckpt_path,'output/node/name','save/restore_all','save/Const:0','frozen_name.pb',True,"")

B.PB文件读取使用

output_graph_def = tf.GraphDef()

with open("your_name.pb","rb") as f:

output_graph_def.ParseFromString(f.read())

_ = tf.import_graph_def(output_graph_def, name="")

node_in = sess.graph.get_tensor_by_name("input_node_name")

model_out = sess.graph.get_tensor_by_name("out_node_name")

feed_dict = {node_in:in_data}

pred = sess.run(model_out, feed_dict)

注:本文代码均为笔者手敲留存,如代码有误可以咨询探讨。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-11-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CodeInHand 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • B.PB文件读取使用
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档