Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >DeepMind高赞课程:24小时看完深度强化学习最新进展(视频)

DeepMind高赞课程:24小时看完深度强化学习最新进展(视频)

作者头像
昱良
发布于 2018-12-17 03:13:07
发布于 2018-12-17 03:13:07
7640
举报

来源:DeepMind & UCL

编辑:肖琴,文强

一直走在深度学习研究最前沿的DeepMind,终于公开了它联合UCL的“高级深度强化学习课程”!18节课24小时,一天看完Deep RL及其2018最新进展。

今天,DeepMind 官推贴出一则告示,将 DeepMind 研究人员今年在 UCL 教授的深度强化学习课程“Advanced Deep Learning and Reinforcement Learning” 资源全部公开。

一共18节课,走过路过不能错过。

深度强化学习人工智能领域的一个新的研究热点,从AlphaGo开始,DeepMind便在这一领域独占鳌头。

深度强化学习以一种通用的形式将深度学习的感知能力与强化学习的决策能力相结合,并能够通过端对端的学习方式实现从原始输入到输出的直接控制。自提出以来, 在许多需要感知高维度原始输入数据和决策控制的任务中都取得了实质性的突破。

结合算法的发展和实际应用场景,DeepMind在UCL教授的这门课程内容也是最前沿的。

还有关键一点,那就是视频的质量和清晰度超赞啊(需要访问外国网站)。

DeepMind亲授“高级深度强化学习课程”

这门课程是DeepMind与伦敦大学学院(UCL)的合作项目,由于DeepMind的研究人员去UCL授课,内容由两部分组成,一是深度学习(利用深度神经网络进行机器学习),二是强化学习(利用强化学习进行预测和控制),最后两条线结合在一起,也就成了DeepMind的拿手好戏——深度强化学习。

这门课也是结合案例讲解的,值得一提,最后一课“第18节:深度强化学习的经典案例”,讲师是 David Silver,这位AlphaGo背后的英雄以及AlphaZero灵魂人物,他讲的课程无论如何也应该听一听。

David Silver在UCL讲课的视频截图

在深度学习部分,课程简要介绍了神经网络和使用TensorFlow的监督学习,然后讲授卷积神经网络、递归神经网络、端到端并基于能量的学习、优化方法、无监督学习以及注意力和记忆。讨论的应用领域包括对象识别和自然语言处理

强化学习部分将涵盖马尔科夫决策过程、动态规划、无模型预测和控制、价值函数逼近、策略梯度方法、学习与规划的集成以及探索/开发困境。讨论的可能应用包括学习玩经典的棋盘游戏和电子游戏。

总体来说,这是一门偏向实践的课程,需要PyTorch和编码基础,学完以后,学生能够在TensorFlow上熟练实现深度学习、强化学习以及深度强化学习相关的一系列算法。

因此,除了深度学习、强化学习和深度强化学习的基础知识,深度神经网络的训练以及优化方法,这门课更加注重如何在TensorFlow中实现深度学习算法,以及如何在复杂动态环境中应用强化学习。

18节课一共24小时,一天看完深度强化学习进展

课程团队

深度学习1:介绍基于机器学习的AI

深度学习2:介绍TensorFlow

深度学习3:神经网络基础

强化学习1:强化学习简介

强化学习2:开发和利用

强化学习3:马尔科夫决策过程和动态编程

强化学习4:无模型的预测和控制

深度学习4:图像识别、端到端学习和Embeddings之外

强化学习5:函数逼近和深度强化学习

强化学习6:策略梯度和Actor Critics

深度学习5:机器学习的优化方法

强化学习7:规划和模型

深度学习6:NLP的深度学习

强化学习8:深度强化学习中的高级话题

深度学习7:深度学习中的注意力和记忆

强化学习9:深度RL智能体简史

深度学习8:无监督学习和生成式模型

强化学习10:经典游戏的案例学习

18节课一共24小时,一天看完高级深度强化学习

下面我们介绍第14节“深度强化学习中的高级话题”。讲课人是DeepMind研究科学家Hado Van Hasselt。Hado Van Hasselt的研究兴趣包括人工智能、机器学习、深度学习,尤其是强化学习。加入DeepMind之前,他在阿尔伯塔大学与Richard Sutton教授合作过。

Hado Van Hasselt是许多前沿论文的共同作者,包括Double Q-learning、Dueling DQN、rainbow DQN、强化学习的Ensemble算法等。

第14节视频

全部视频列表:

https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-11-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习算法与Python学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
DeepMind高赞课程:24小时看完深度强化学习最新进展(视频)
今天,DeepMind 官推贴出一则告示,将 DeepMind 研究人员今年在 UCL 教授的深度强化学习课程“Advanced Deep Learning and Reinforcement Learning” 资源全部公开。
新智元
2018/12/18
4500
DeepMind高赞课程:24小时看完深度强化学习最新进展(视频)
DeepMind推出深度学习与强化学习进阶课程(附视频)
机器之心报道 参与:张倩、李泽南 在 OpenAI 推出强化学习课程 Spinning Up 后不久。昨天,DeepMind 与 UCL 合作推出了一门深度学习与强化学习进阶课程,以在线视频形式呈现。
机器之心
2018/12/17
5800
DeepMind深度学习高级课程,视频已全部放出
课号COMPGI22,名叫高级深度学习和强化学习 (Advanced Deep Learning and Reinforcement Learning) ,是今年早些时候结课的。
量子位
2019/04/29
5740
DeepMind深度学习高级课程,视频已全部放出
102页PPT,DeepMind强化学习最新进展,含图文、公式和代码
本文提供涵盖了强化学习RL基础概念、策略梯度、动态规划以及D4PG、R2D3等RL算法的资源。
数据派THU
2019/11/28
1.5K0
DeepMind联合UCL,推出2021强化学习最新课程
机器之心报道 编辑:小舟 DeepMind 的研究科学家和工程师亲自讲授了一套强化学习课程,目前已全部上线。 DeepMind 作为全球顶级 AI 研究机构,自 2010 年创建以来已有多项世界瞩目的研究成果,例如击败世界顶级围棋玩家的 AlphaGo 和今年高效预测的蛋白质结构的 AlphaFold。 近几年,DeepMind 联合伦敦大学学院(UCL)推出了一些人工智能线上课程,今年他们联合推出的「2021 强化学习系列课程」现已全部上线。该课程由 DeepMind 的研究科学家和工程师亲自讲授,旨在
机器之心
2023/03/29
8480
DeepMind联合UCL,推出2021强化学习最新课程
ICML2016最佳论文《深度强化学习的竞争网络架构》(附下载)
【新智元导读】ICML2016最佳论文今天出炉,三篇最佳论文中,谷歌DeepMind占了两篇。新智元特邀Facebook资深研究员田渊栋对其中的《深度强化学习的竞争网络架构》进行点评。 获本年度ICML最佳的三篇论文如下: Monday – Ballroom 3+4 – 12:04 – Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang Google Inc., Tom Schaul Google Inc., Mat
新智元
2018/03/22
7951
ICML2016最佳论文《深度强化学习的竞争网络架构》(附下载)
Seq2seq强化学习实战 (Pytorch, Tensorflow, Theano)
【导读】本文是Kirti Bakshi在1月14日写的关于其强化学习课程的一个介绍,作者首先简单介绍了机器学习的缺点,以及为什么使用深度学习。然后讲述了其开设的课程的主要内容,包括:强化学习基础、实用
WZEARW
2018/04/12
1.1K0
Seq2seq强化学习实战 (Pytorch, Tensorflow, Theano)
开学三周了快补课:伯克利CS 294深度强化学习课,有视频有课件
8月22日到现在,从行为的监督学习,讲到了策略梯度和演员-评论家,前六节课的视频已经放出来了。
量子位
2018/09/29
8420
开学三周了快补课:伯克利CS 294深度强化学习课,有视频有课件
学界 | DeepMind提出元梯度强化学习算法,显著提高大规模深度强化学习应用的性能
选自arXiv 作者:Zhongwen Xu、Hado van Hasselt、David Silver 机器之心编译 参与:Pedro、路 近日,来自 DeepMind 的研究者 David Silver 等人发布论文,提出一种基于梯度的元学习算法,可以在线调整元参数,使得回报既能适应具体问题,又能随着时间动态调整以适应不断变化的学习环境。 强化学习(RL)的核心目标是优化智能体的回报(累积奖励)。一般通过预测和控制相结合的方法来实现这一目标。预测的子任务是估计价值函数,即在任何给定状态下的预期回报。理
机器之心
2018/06/08
5310
强化学习系列之九:Deep Q Network (DQN)
本文介绍了强化学习中的马尔科夫决策过程、模型相关的强化学习、模型无关的策略评价、模型无关的策略学习和价值函数近似等概念。作者通过举例来说明这些概念在强化学习中的应用,并提出了针对这些概念的相关算法。最后,作者对强化学习未来的研究方向进行了展望,包括深度强化学习和策略搜索算法等。
AlgorithmDog
2017/12/29
2.4K0
强化学习系列之九:Deep Q Network (DQN)
【资料总结】| Deep Reinforcement Learning 深度强化学习
  在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习。有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准。如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略。简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么下一次就不会犯同样的错误,如果遵守规则,那你妈妈兴许会给你一些奖励,最终的目标都是希望你在该吃饭的时候吃饭,该吃零食的时候吃零食,而不是在不合适的时间吃零食。同样,曾经风靡过一段时间的Flappy bird,很多玩家在短时间内达到了高分,是怎么做到的呢?除了非常厉害的玩家是真的自己手动玩的高分,其实很多高分是通过我们用强化学习的方法来训练一个模型,让小鸟自己学习如何不碰到障碍物一直往前飞,获得最高分。此外,大家熟知的Alpha Go,其实也是强化学习训练的模型,不过是深度强化学习。
Charlotte77
2019/05/25
7320
资源 | 学到了!UC Berkeley CS 294深度强化学习课程(附视频与PPT)
选自UC Berkeley 机器之心整 CS294 深度强化学习 2017 年秋季课程的所有资源已经放出。该课程为各位读者提供了强化学习的进阶资源,且广泛涉及深度强化学习的基本理论与前沿挑战。本文介绍了该课程主要讨论的强化学习主题,读者可根据兴趣爱好与背景知识选择不同部分的课程。请注意,UC Berkeley 的 CS 294 并未被归类为在线开放课程,所有视频的使用权仅限个人学习。 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://ww
朱晓霞
2018/04/18
1.4K0
资源 | 学到了!UC Berkeley  CS 294深度强化学习课程(附视频与PPT)
15大顶级深度学习课程,你收集全了吗?
翻译 | AI科技大本营 参与 | 刘畅、Donna 目前,深度学习和深度强化学习已经在实践中得到了广泛的运用。资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程。 这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识。 吴恩达:深度学习专项 这系列课程侧重于讲解深度学习
企鹅号小编
2018/02/05
8700
15大顶级深度学习课程,你收集全了吗?
李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程,你收集全了吗?
翻译 | AI科技大本营 参与 | 刘畅 编辑 | Donna 目前,深度学习和深度强化学习已经在实践中得到了广泛的运用。资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程。 这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识。 吴恩达:深度学习专项 这系列课程侧重于讲
企鹅号小编
2018/02/05
9470
李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程,你收集全了吗?
Transformers+世界模型,竟能拯救深度强化学习?
---- 新智元报道   编辑:武穆 【新智元导读】前一段时间,LeCun曾预言AGI:大模型和强化学习都没出路,世界模型才是新路。但最近,康奈尔大学有研究人员,正试着用Transformers将强化学习与世界模型连接起来。 很多人都知道,当年打败李世石、柯洁等一众国际顶尖棋手的AlphaGo一共迭代了三个版本,分别是战胜李世石的一代目AlphaGo Lee、战胜柯洁的二代目AlphaGo Master,以及吊打前两代的三代目AlphaGo Zero。 AlphaGo的棋艺能够逐代递增,背后其实是在A
新智元
2022/09/06
8170
Transformers+世界模型,竟能拯救深度强化学习?
【Bengio领衔】DeepMind、谷歌大脑核心研究员2017深度学习最新报告(PPT)
【新智元导读】 深度学习领军人物 Yoshua Bengio 主导的蒙特利尔大学深度学习暑期学校目前“深度学习”部分的报告已经全部结束。 本年度作报告的学术和行业领袖包括有来自DeepMind、谷歌大脑、蒙特利尔大学、牛津大学、麦吉尔大学、多伦多大学等等。覆盖的主题包括:时间递归神经网络、自然语言处理、生成模型、大脑中的深度学习等等。现在全部PPT已经公开,是了解深度学习发展和趋势不可多得的新鲜材料。 蒙特利尔大学的深度学习暑期学校久负盛名,在深度学习领军人物Yoshua Bengio 号召下,每年都聚集了
新智元
2018/03/27
7720
【Bengio领衔】DeepMind、谷歌大脑核心研究员2017深度学习最新报告(PPT)
深度 | 超越DQN和A3C:深度强化学习领域近期新进展概览
我觉得,深度强化学习最让人喜欢的一点是它确实实在难以有效,这一点不同于监督学习。用神经网络来解决一个计算机视觉问题可能能达到 80% 的效果;而如果用神经网络来处理强化学习问题,你可能就只能眼睁睁地看着它失败——而且你每次尝试时遭受的失败都各不相同。
机器之心
2018/12/06
7480
深度 | 超越DQN和A3C:深度强化学习领域近期新进展概览
综述 | 深度学习的最新进展
来源:机器学习研习院本文约10500字,建议阅读20+分钟本文我们将简要讨论近年来关于深度学习的最新进展。 “ 综述永远是入门新领域的最快捷径之一!” Recent Advances in Deep Learning:An Overview 摘要:深度学习是机器学习和人工智能研究的最新趋势之一。它也是当今最流行的科学研究趋势之一。深度学习方法为计算机视觉和机器学习带来了革命性的进步。新的深度学习技术正在不断诞生,超越最先进的机器学习甚至是现有的深度学习技术。近年来,全世界在这一领域取得了许多重大突破。由于
数据派THU
2022/07/07
9540
综述 | 深度学习的最新进展
强化学习:DQN与Double DQN讨论
强化学习逐渐引起公众的注意要归功于谷歌的DeepMind公司。DeepMind公司最初是由Demis Hassabis, Shane Legg和Mustafa Suleyman于2010年创立的。创始人Hassabis有三重身份:游戏开发者,神经科学家以及人工智能创业者。Hassabis游戏开发者的身份使人不难理解DeepMind在Nature上发表的第一篇论文是以雅达利(atari)游戏为背景的。同时,Hassabis又是国际象棋高手,他在挑战完简单的雅达利游戏后再挑战深奥的围棋游戏也就不难理解了。这就有了AlphaGo和李世石的2016之战,以及他在Nature发表的第二篇论文。一战成名之后,深度强化学习再次博得世人的眼球。当然,DeepMind的成功离不开近几年取得突破进展的深度学习技术。本节主要讲解DQN,也就是DeepMind发表在Nature上的第一篇论文,名字是Human-level Control throughDeep Reinforcement Learning。
博文视点Broadview
2020/06/11
1.4K0
强化学习:DQN与Double DQN讨论
强化学习如何入门?看这篇文章就够了
对于大脑的工作原理,我们知之甚少,但是我们知道大脑能通过反复尝试来学习知识。我们做出合适选择时会得到奖励,做出不切当选择时会受到惩罚,这也是我们来适应环境的方式。如今,我们可以利用强大的计算能力,在软件中对这个具体过程进行建模,这就是强化学习。
量子位
2018/07/20
1.1K0
推荐阅读
相关推荐
DeepMind高赞课程:24小时看完深度强化学习最新进展(视频)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档