前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >第二次RNA-seq实战总结(3)-用DESeq2进行基因表达差异分析

第二次RNA-seq实战总结(3)-用DESeq2进行基因表达差异分析

作者头像
戈贝尔光和热
发布2018-12-27 15:16:53
4.2K0
发布2018-12-27 15:16:53
举报
文章被收录于专栏:HUBU生信

DESeq2是一个用于分析基因表达差异的R包,具体操作姚在R语言中运行 1.R语言安装DESeq2

代码语言:javascript
复制
>source("https://bioconductor.org/biocLite.R")
>biocLite("DESeq2")

2.载入基因表达量文件,添加列名

代码语言:javascript
复制
> setwd("C:\\Users\\18019\\Desktop\\counts")
> options(stringsAsFactors=FALSE)
> control1<-read.table("SRR957677_counts.txt",sep = "\t",col.names = c("gene_id","control1"))
> head(control1)
               gene_id control1
1 ENSG00000000003.14_2     1576
2  ENSG00000000005.5_2        0
3 ENSG00000000419.12_2      756
4 ENSG00000000457.13_3      301
5 ENSG00000000460.16_5      764
6 ENSG00000000938.12_2        0
> control2<-read.table("SRR957678_counts.txt",sep = "\t",col.names = c("gene_id","control2"))
> treat1<-read.table("SRR957679_counts.txt",sep = "\t",col.names = c("gene_id","treat1"))
>treat2<-read.table("SRR957680_counts.txt",sep = "\t",col.names = c("gene_id","treat2"))

3.数据整合

代码语言:javascript
复制
> raw_count <- merge(merge(control1, control2, by="gene_id"), merge(treat1, treat2, by="gene_id"))
> head(raw_count)
                 gene_id control1 control2  treat1  treat2
1 __alignment_not_unique  7440131  2973831 7861484 8676884
2            __ambiguous   976485   412543 1014239 1179051
3           __no_feature  1860117   768637 1289737 1812056
4          __not_aligned  1198545   572588 1256232 1348068
5        __too_low_aQual        0        0       0       0
6   ENSG00000000003.14_2     1576      713    1589    1969
#删除前五行
>raw_count_filt <- raw_count[-1:-5,]
#因为我们无法在EBI数据库上直接搜索找到ENSMUSG00000024045.5这样的基因,只能是ENSMUSG00000024045的整数,没有小数点,所以需要进一步替换为整数的形式。
#将_后面的数字替换为空赋值给a
>a<- gsub("\\_\\d*", "", raw_count_filt$gene_id)
#将.后面的数字替换为空赋值给ENSEMBL
>ENSEMBL <- gsub("\\.\\d*", "", a)
# 将ENSEMBL重新添加到raw_count_filt1矩阵
>row.names(raw_count_filt) <- ENSEMBL
> raw_count_filt <- cbind(ENSEMBL,raw_count_filt)
> colnames(raw_count_filt)[1] <- c("ensembl_gene_id")
>head(raraw_count_filt )
                ensembl_gene_id              gene_id control1 control2 treat1 treat2
ENSG00000000003 ENSG00000000003 ENSG00000000003.14_2     1576      713   1589   1969
ENSG00000000005 ENSG00000000005  ENSG00000000005.5_2        0        0      0      1
ENSG00000000419 ENSG00000000419 ENSG00000000419.12_2      756      384    806    984
ENSG00000000457 ENSG00000000457 ENSG00000000457.13_3      301      151    217    324
ENSG00000000460 ENSG00000000460 ENSG00000000460.16_5      764      312    564    784
ENSG00000000938 ENSG00000000938 ENSG00000000938.12_2        0        0      0      0

4.对基因进行注释-获取gene_symbol 用bioMart对ensembl_id转换成gene_symbol

代码语言:javascript
复制
> library("biomaRt")
> library("curl")
> mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))
> my_ensembl_gene_id <- row.names(raw_count_filt)
>  options(timeout = 4000000)
> hg_symbols<- getBM(attributes=c('ensembl_gene_id','hgnc_symbol',"chromosome_name", "start_position","end_position", "band"), filters= 'ensembl_gene_id', values = my_ensembl_gene_id, mart = mart)
#将合并后的表达数据框raw_count_filt和注释得到的hg_symbols整合为一
readcount <- merge(raw_count_filt, hg_symbols, by="ensembl_gene_id")
> head(readcount)
  ensembl_gene_id              gene_id control1 control2 treat1 treat2 hgnc_symbol chromosome_name start_position
1 ENSG00000000003 ENSG00000000003.14_2     1576      713   1589   1969      TSPAN6               X      100627109
2 ENSG00000000005  ENSG00000000005.5_2        0        0      0      1        TNMD               X      100584802
3 ENSG00000000419 ENSG00000000419.12_2      756      384    806    984        DPM1              20       50934867
4 ENSG00000000457 ENSG00000000457.13_3      301      151    217    324       SCYL3               1      169849631
5 ENSG00000000460 ENSG00000000460.16_5      764      312    564    784    C1orf112               1      169662007
6 ENSG00000000938 ENSG00000000938.12_2        0        0      0      0         FGR               1       27612064
  end_position   band
1    100639991  q22.1
2    100599885  q22.1
3     50958555 q13.13
4    169894267  q24.2
5    169854080  q24.2
6     27635277  p35.3
#输出count表达矩阵
> write.csv(readcount, file='readcount_all,csv')
> readcount<-raw_count_filt[ ,-1:-2]
> write.csv(readcount, file='readcount.csv')
> head(readcount)
                control1 control2 treat1 treat2
ENSG00000000003     1576      713   1589   1969
ENSG00000000005        0        0      0      1
ENSG00000000419      756      384    806    984
ENSG00000000457      301      151    217    324
ENSG00000000460      764      312    564    784
ENSG00000000938        0        0      0      0

5.DEseq2筛选差异表达基因并注释(bioMart)

代码语言:javascript
复制
#载入数据(countData和colData)
> mycounts<-readcount
> head(mycounts)
                control1 control2 treat1 treat2
ENSG00000000003     1576      713   1589   1969
ENSG00000000005        0        0      0      1
ENSG00000000419      756      384    806    984
ENSG00000000457      301      151    217    324
ENSG00000000460      764      312    564    784
ENSG00000000938        0        0      0      0
> condition <- factor(c(rep("control",2),rep("treat",2)), levels = c("control","treat"))
> condition
[1] control control treat   treat  
Levels: control treat
> colData <- data.frame(row.names=colnames(mycounts), condition)
> colData
         condition
control1   control
control2   control
treat1       treat
treat2       treat

构建dds对象,开始DESeq流程

代码语言:javascript
复制
>library("DESeq2")
> dds <- DESeqDataSetFromMatrix(mycounts, colData, design= ~ condition)
> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
> dds
class: DESeqDataSet 
dim: 60880 4 
metadata(1): version
assays(4): counts mu H cooks
rownames(60880): ENSG00000000003 ENSG00000000005 ... ENSG00000285993 ENSG00000285994
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(4): control1 control2 treat1 treat2
colData names(2): condition sizeFactor
#查看总体结果
> res = results(dds, contrast=c("condition", "control", "treat"))
> res = res[order(res$pvalue),]
> head(res)
log2 fold change (MLE): condition control vs treat 
Wald test p-value: condition control vs treat 
DataFrame with 6 rows and 6 columns
                        baseMean   log2FoldChange             lfcSE             stat               pvalue
                       <numeric>        <numeric>         <numeric>        <numeric>            <numeric>
ENSG00000178691 1025.66218695436 2.83012875791025 0.225513526042636 12.5497073615672 3.98981786210676e-36
ENSG00000135535 2415.77359618136 1.22406336488047 0.183431131037356 6.67314952460929  2.5037106203736e-11
ENSG00000164172 531.425786834548 1.30449018960413 0.207785830749451 6.27805170785243 3.42841906697453e-10
ENSG00000172239 483.998634607265 1.31701332235233 0.215453141699223 6.11275988813803 9.79226522597759e-10
ENSG00000237296 53.0114998109978 2.70139282483841 0.480033904207378 5.62750422660019 1.82835684560772e-08
ENSG00000196504 3592.67315807893 1.09372324353448 0.200308218929736 5.46020153031335 4.75594407815571e-08
                                padj
                           <numeric>
ENSG00000178691 3.90682965057494e-32
ENSG00000135535 1.22581671973492e-07
ENSG00000164172 1.11903598346049e-06
ENSG00000172239 2.39714652731931e-06
ENSG00000237296                   NA
ENSG00000196504 9.31404088266014e-05
> summary(res)

out of 33100 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 78, 0.24%
LFC < 0 (down)     : 15, 0.045%
outliers [1]       : 0, 0%
low counts [2]     : 23308, 70%
(mean count < 135)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
#这里可以看到有78个基因上调,15个基因下调
#将分析结果输出
> write.csv(res,file="All_results.csv")

提取差异表达基因 这里我用的方法是倍差法 获取padj(p值经过多重校验校正后的值)小于0.05,表达倍数取以2为对数后大于1或者小于-1的差异表达基因

代码语言:javascript
复制
> diff_gene_deseq2 <-subset(res, padj < 0.05 & abs(log2FoldChange) > 1)
> dim(diff_gene_deseq2)
[1] 21  6
> head(diff_gene_deseq2)
log2 fold change (MLE): condition control vs treat 
Wald test p-value: condition control vs treat 
DataFrame with 6 rows and 6 columns
                        baseMean   log2FoldChange             lfcSE             stat               pvalue
                       <numeric>        <numeric>         <numeric>        <numeric>            <numeric>
ENSG00000178691 1025.66218695436 2.83012875791025 0.225513526042636 12.5497073615672 3.98981786210676e-36
ENSG00000135535 2415.77359618136 1.22406336488047 0.183431131037356 6.67314952460929  2.5037106203736e-11
ENSG00000164172 531.425786834548 1.30449018960413 0.207785830749451 6.27805170785243 3.42841906697453e-10
ENSG00000172239 483.998634607265 1.31701332235233 0.215453141699223 6.11275988813803 9.79226522597759e-10
ENSG00000196504 3592.67315807893 1.09372324353448 0.200308218929736 5.46020153031335 4.75594407815571e-08
ENSG00000163848 633.066990185649 1.15489622775117 0.219655131372136 5.25777030810433 1.45812478575117e-07
                                padj
                           <numeric>
ENSG00000178691 3.90682965057494e-32
ENSG00000135535 1.22581671973492e-07
ENSG00000164172 1.11903598346049e-06
ENSG00000172239 2.39714652731931e-06
ENSG00000196504 9.31404088266014e-05
ENSG00000163848 0.000230253090268928
#输出差异基因
> write.csv(diff_gene_deseq2,file= "DEG_treat_vs_control.csv")
#用bioMart对差异表达基因进行注释
> library("biomaRt")
> library("curl")
> hg_symbols<- getBM(attributes=c('ensembl_gene_id','external_gene_name',"description"),filters = 'ensembl_gene_id', values = my_ensembl_gene_id, mart = mart)
> head(hg_symbols)
  ensembl_gene_id external_gene_name
1 ENSG00000011405            PIK3C2A
2 ENSG00000100731              PCNX1
3 ENSG00000128512              DOCK4
4 ENSG00000135535              CD164
5 ENSG00000140526              ABHD2
6 ENSG00000144228              SPOPL
                                                                                                  description
1 phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha [Source:HGNC Symbol;Acc:HGNC:8971]
2                                                               pecanex 1 [Source:HGNC Symbol;Acc:HGNC:19740]
3                                              dedicator of cytokinesis 4 [Source:HGNC Symbol;Acc:HGNC:19192]
4                                                           CD164 molecule [Source:HGNC Symbol;Acc:HGNC:1632]
5                                         abhydrolase domain containing 2 [Source:HGNC Symbol;Acc:HGNC:18717]
6                                       speckle type BTB/POZ protein like [Source:HGNC Symbol;Acc:HGNC:27934]
#合并数据:res结果hg_symbols合并成一个文件
> ensembl_gene_id<-rownames(diff_gene_deseq2)
> diff_gene_deseq2<-cbind(ensembl_gene_id,diff_gene_deseq2)
> colnames(diff_gene_deseq2)[1]<-c("ensembl_gene_id")
> diff_name<-merge(diff_gene_deseq2,hg_symbols,by="ensembl_gene_id")
> head(diff_name)
DataFrame with 6 rows and 9 columns
  ensembl_gene_id         baseMean   log2FoldChange             lfcSE             stat               pvalue
      <character>        <numeric>        <numeric>         <numeric>        <numeric>            <numeric>
1 ENSG00000011405 1600.01408863821 1.07722909393382  0.24714564887963 4.35868120202462 1.30848557424083e-05
2 ENSG00000100731 1162.93822827396  1.0006257630015 0.214393389946423 4.66724166846545 3.05270197242525e-06
3 ENSG00000128512 368.442571635954 1.19657846347522 0.262780839813213  4.5535224878867 5.27550292947225e-06
4 ENSG00000135535 2415.77359618136 1.22406336488047 0.183431131037356 6.67314952460929  2.5037106203736e-11
5 ENSG00000140526 796.447227235737 1.05296203760187  0.23492350092969 4.48214858639031 7.38952622958053e-06
6 ENSG00000144228 293.746859588111 1.10903132755747 0.283181091639851 3.91633255290906  8.9906210067011e-05
                  padj external_gene_name
             <numeric>        <character>
1  0.00533862114290257            PIK3C2A
2    0.002491004809499              PCNX1
3  0.00319558231320097              DOCK4
4 1.22581671973492e-07              CD164
5  0.00364483675888146              ABHD2
6   0.0214722343652725              SPOPL
                                                                                                  description
                                                                                                  <character>
1 phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha [Source:HGNC Symbol;Acc:HGNC:8971]
2                                                               pecanex 1 [Source:HGNC Symbol;Acc:HGNC:19740]
3                                              dedicator of cytokinesis 4 [Source:HGNC Symbol;Acc:HGNC:19192]
4                                                           CD164 molecule [Source:HGNC Symbol;Acc:HGNC:1632]
5                                         abhydrolase domain containing 2 [Source:HGNC Symbol;Acc:HGNC:18717]
6                                       speckle type BTB/POZ protein like [Source:HGNC Symbol;Acc:HGNC:27934]
#输出含注释的差异基因文件
write.csv(diff_name,file= "diff_gene.csv")

到此为止就完成了RNA-seq的数据处理流程,下一步就是用pheatmap绘制热图了

全文结束,欢迎在评论区讨论~

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018/11/04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档