腾讯云EMR&Elasticsearch中使用ES-Hadoop之MR&Hive篇
腾讯云EMR&Elasticsearch中使用ES-Hadoop之Spark篇
在上一篇中,我们介绍了在Hadoop和hive中做ES数据的导入导出。本篇我们介绍在Spark下使用ES-Hadoop的例子
*注:资源准备、数据准备以及ES-Hadoop关键配置项说明请参考上一篇中的内容
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.elasticsearch.spark.rdd.api.java.JavaEsSpark;
import java.util.Map;
public class ReadFromESBySpark {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("my-app").clone()
.set("es.nodes", "10.0.4.17")
.set("es.port", "9200")
.set("es.nodes.wan.only", "true")
.set("es.input.use.sliced.partitions", "false")
.set("es.input.max.docs.per.partition", "100000000");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<String, Map<String, Object>> rdd = JavaEsSpark.esRDD(sc, "logs-201998/type", "?q=clientip:247.37.0.0");
for (Map<String, Object> item : rdd.values().collect()) {
System.out.println(item);
}
sc.stop();
}
}
通过JavaEsSpark.esRDD(sc, "logs-201998/type", "?q=clientip:247.37.0.0")
方法从ES集群的索引logs-201998/type
中,查询query为?q=clientip:247.37.0.0
,返回JavaPairRDD
。
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.spark_project.guava.collect.ImmutableList;
import org.spark_project.guava.collect.ImmutableMap;
import org.elasticsearch.spark.rdd.api.java.JavaEsSpark;
import java.util.Map;
import java.util.List;
public class WriteToESUseRDD {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("my-app").clone()
.set("es.nodes", "10.0.4.17")
.set("es.port", "9200")
.set("es.nodes.wan.only", "true")
.set("es.batch.size.bytes", "30MB")
.set("es.batch.size.entries", "20000")
.set("es.batch.write.refresh", "false")
.set("es.batch.write.retry.count", "50")
.set("es.batch.write.retry.wait", "500s")
.set("es.http.timeout", "5m")
.set("es.http.retries", "50")
set("es.action.heart.beat.lead", "50s");
JavaSparkContext sc = new JavaSparkContext(conf);
Map<String, ?> logs = ImmutableMap.of("clientip", "255.255.255.254",
"request", "POST /write/using_spark_rdd HTTP/1.1",
"status", 200,"size", 802,
"@timestamp", 895435190);
List<Map<String, ?>> list = ImmutableList.of(logs);
JavaRDD<Map<String, ?>> javaRDD = sc.parallelize(list);
JavaEsSpark.saveToEs(javaRDD, "logs-201998/type");
sc.stop();
}
}
构建JavaRDD
,通过JavaEsSpark.saveToEs
写入。
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.Seconds;
import org.elasticsearch.spark.streaming.api.java.JavaEsSparkStreaming;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.spark_project.guava.collect.ImmutableList;
import org.spark_project.guava.collect.ImmutableMap;
import java.util.Map;
import java.util.LinkedList;
import java.util.Queue;
public class WriteToESUseSparkStreaming {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("my-app").clone()
.set("es.nodes", "10.0.4.17")
.set("es.port", "9200")
.set("es.nodes.wan.only","true")
.set("es.batch.size.bytes", "30MB")
.set("es.batch.size.entries", "20000")
.set("es.batch.write.refresh", "false")
.set("es.batch.write.retry.count", "50")
.set("es.batch.write.retry.wait", "500s")
.set("es.http.timeout", "5m")
.set("es.http.retries", "50")
set("es.action.heart.beat.lead", "50s");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaStreamingContext jssc = new JavaStreamingContext(sc, Seconds.apply(1));
Map<String, ?> logs = ImmutableMap.of("clientip", "255.255.255.253", "request", "POST /write/using_spark_streaming HTTP/1.1");
JavaRDD<Map<String, ?>> javaRDD = sc.parallelize(ImmutableList.of(logs));
Queue<JavaRDD<Map<String, ?>>> microbatches = new LinkedList<>();
microbatches.add(javaRDD);
JavaDStream<Map<String, ?>> javaDStream = jssc.queueStream(microbatches);
JavaEsSparkStreaming.saveToEs(javaDStream, "logs-201998/type");
sc.stop();
}
}
构建JavaRDD
和JavaDStream
,通过调用JavaEsSparkStreaming.saveToEs
写入。
wget http://central.maven.org/maven2/org/elasticsearch/elasticsearch-spark-20_2.11/5.6.4/elasticsearch-spark-20_2.11-5.6.4.jar
spark-submit --jars elasticsearch-spark-20_2.11-5.6.4.jar --class "ReadFromESBySpark" esspark-1.0-SNAPSHOT.jar
通过--jars
参数,载入elasticsearch-spark
相比于Hadoop,Spark与ES的交互有更多的方式,包括RDD,Spark Streaming,还有文中未涉及到的DataSet与Spark SQL的模式等等。本位未列出scale版的相关代码,可以参考Elastic官方文档进行实际的演练。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。