Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。
Python
##不推荐temp = aa = bb = a ##推荐a, b = b, a # 先生成一个元组(tuple)对象,然后unpack
复制 文本
Python
##不推荐l = ['David', 'Pythonista', '+1-514-555-1234']first_name = l[0]last_name = l[1]phone_number = l[2] ##推荐l = ['David', 'Pythonista', '+1-514-555-1234']first_name, last_name, phone_number = l
复制 文本
Python
##不推荐if fruit == "apple" or fruit == "orange" or fruit == "berry": # 多次判断 ##推荐if fruit in ["apple", "orange", "berry"]: # 使用 in 更加简洁
复制 文本
Python
##不推荐colors = ['red', 'blue', 'green', 'yellow'] result = ''for s in colors: result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象 ##推荐colors = ['red', 'blue', 'green', 'yellow']result = ''.join(colors) # 没有额外的内存分配
复制 文本
Python
##不推荐for key in my_dict.keys(): # my_dict[key] ... ##推荐for key in my_dict: # my_dict[key] ... # 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()# 生成静态的键值列表。
复制 文本
Python
##不推荐if my_dict.has_key(key): # ...do something with d[key] #python2支持,python3已经不支持此写法 ##推荐if key in my_dict: # ...do something with d[key]
复制 文本
Python
##不推荐navs = {}for (portfolio, equity, position) in data: if portfolio not in navs: navs[portfolio] = 0 navs[portfolio] += position * prices[equity]##推荐navs = {}for (portfolio, equity, position) in data: # 使用 get 方法 navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity] # 或者使用 setdefault 方法 navs.setdefault(portfolio, 0) navs[portfolio] += position * prices[equity]
复制 文本
Python
##不推荐if x == True: # ....if len(items) != 0: # ...if items != []: # ... ##推荐if x: # ....if items: # ...
复制 文本
Python
##不推荐items = 'zero one two three'.split()# method 1i = 0for item in items: print i, item i += 1# method 2for i in range(len(items)): print i, items[i] ##推荐items = 'zero one two three'.split()for i, item in enumerate(items): print i, item
复制 文本
Python
##不推荐new_list = []for item in a_list: if condition(item): new_list.append(fn(item)) ##推荐new_list = [fn(item) for item in a_list if condition(item)]
复制 文本
Python
##不推荐for sub_list in nested_list: if list_condition(sub_list): for item in sub_list: if item_condition(item): # do something... ##推荐gen = (item for sl in nested_list if list_condition(sl) for item in sl if item_condition(item))for item in gen: # do something...
复制 文本
Python
##不推荐for x in x_list: for y in y_list: for z in z_list: # do something for x & y ##推荐from itertools import productfor x, y, z in product(x_list, y_list, z_list): # do something for x, y, z
复制 文本
Python
##不推荐def my_range(n): i = 0 result = [] while i < n: result.append(fn(i)) i += 1 return result # 返回列表 ##推荐def my_range(n): i = 0 result = [] while i < n: yield fn(i) # 使用生成器代替列表 i += 1### 尽量用生成器代替列表,除非必须用到列表特有的函数。
复制 文本
Python
##不推荐reduce(rf, filter(ff, map(mf, a_list))) ##推荐from itertools import ifilter, imapreduce(rf, ifilter(ff, imap(mf, a_list)))### lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。
复制 文本
Python
##不推荐found = Falsefor item in a_list: if condition(item): found = True breakif found: # do something if found... ##推荐if any(condition(item) for item in a_list): # do something if found...
复制 文本
Python
##不推荐class Clock(object): def __init__(self): self.__hour = 1 def setHour(self, hour): if 25 > hour > 0: self.__hour = hour else: raise BadHourException def getHour(self): return self.__hour ##推荐class Clock(object): def __init__(self): self.__hour = 1 def __setHour(self, hour): if 25 > hour > 0: self.__hour = hour else: raise BadHourException def __getHour(self): return self.__hour hour = property(__getHour, __setHour)
复制 文本
Python
##不推荐f = open("some_file.txt")try: data = f.read() # 其他文件操作..finally: f.close() ##推荐with open("some_file.txt") as f: data = f.read() # 其他文件操作...
复制 文本
Python
##不推荐try: os.remove("somefile.txt")except OSError: pass ##推荐from contextlib import ignored # Python 3 only with ignored(OSError): os.remove("somefile.txt")
复制 文本
Python
##不推荐import threadinglock = threading.Lock() lock.acquire()try: # 互斥操作...finally: lock.release() ##推荐import threadinglock = threading.Lock() with lock: # 互斥操作...
复制 文本
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。