导读:现在这年头,做深度学习的,如果不在自己的文章里画一个神经网络结构图,都不好意思出门跟人说话。今天小编给大家介绍一个工具,让你简单又快速的搞定神经网络结构图:PlotNeuralNet。
来源:专知(ID:Quan_Zhuanzhi)
01 工具简介
PlotNeuralNet工具,具如其名,plot neural net用的,首先我们看看效果:
▲FCN-8
▲VGG-16
▲Holistically-Nested Edge Detection
02 安装使用
PlotNeuralNet的使用方法非常简单,首先将这个项目克隆下来:
git clone https://github.com/HarisIqbal88/PlotNeuralNet
然后,你可以自己写一个python脚本,想要用什么结构,就从PlotNerualNet里找对应的模块,然后,把它们拼起来就行, 好比UNet:
你只需要按部就班的堆:
import sys
sys.path.append('../')
from core.tikzeng
import *from core.blocks import *
arch = [
to_head('..'),
to_cor(),
to_begin(),
#input
to_input( '../examples/fcn8s/cats.jpg' ),
#block-001
to_ConvConvRelu( name='ccr_b1', s_filer=500, n_filer=(64,64), offset="(0,0,0)", to="(0,0,0)", width=(2,2), height=40, depth=40 ),
to_Pool(name="pool_b1", offset="(0,0,0)", to="(ccr_b1-east)", width=1, height=32, depth=32, opacity=0.5),
*block_2ConvPool( name='b2', botton='pool_b1', top='pool_b2', s_filer=256, n_filer=128, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ),
*block_2ConvPool( name='b3', botton='pool_b2', top='pool_b3', s_filer=128, n_filer=256, offset="(1,0,0)", size=(25,25,4.5), opacity=0.5 ),
*block_2ConvPool( name='b4', botton='pool_b3', top='pool_b4', s_filer=64, n_filer=512, offset="(1,0,0)", size=(16,16,5.5), opacity=0.5 ),
#Bottleneck
#block-005
to_ConvConvRelu( name='ccr_b5', s_filer=32, n_filer=(1024,1024), offset="(2,0,0)", to="(pool_b4-east)", width=(8,8), height=8, depth=8, caption="Bottleneck" ),
to_connection( "pool_b4", "ccr_b5"),
#Decoder
*block_Unconv( name="b6", botton="ccr_b5", top='end_b6', s_filer=64, n_filer=512, offset="(2.1,0,0)", size=(16,16,5.0), opacity=0.5 ),
to_skip( of='ccr_b4', to='ccr_res_b6', pos=1.25),
*block_Unconv( name="b7", botton="end_b6", top='end_b7', s_filer=128, n_filer=256, offset="(2.1,0,0)", size=(25,25,4.5), opacity=0.5 ),
to_skip( of='ccr_b3', to='ccr_res_b7', pos=1.25),
*block_Unconv( name="b8", botton="end_b7", top='end_b8', s_filer=256, n_filer=128, offset="(2.1,0,0)", size=(32,32,3.5), opacity=0.5 ),
to_skip( of='ccr_b2', to='ccr_res_b8', pos=1.25),
*block_Unconv( name="b9", botton="end_b8", top='end_b9', s_filer=512, n_filer=64, offset="(2.1,0,0)", size=(40,40,2.5), opacity=0.5 ),
to_skip( of='ccr_b1', to='ccr_res_b9', pos=1.25),
to_ConvSoftMax( name="soft1", s_filer=512, offset="(0.75,0,0)", to="(end_b9-east)", width=1, height=40, depth=40, caption="SOFT" ),
to_connection( "end_b9", "soft1"),
to_end()
]
def main():
namefile = str(sys.argv[0]).split('.')[0]
to_generate(arch, namefile + '.tex' )
if __name__ == '__main__':
main()
赶紧试试吧!
Github 地址:
https://github.com/HarisIqbal88/PlotNeuralNet
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有