Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[爬虫]scrapy框架

[爬虫]scrapy框架

作者头像
周小董
发布于 2019-03-25 10:10:32
发布于 2019-03-25 10:10:32
1.3K00
代码可运行
举报
文章被收录于专栏:python前行者python前行者
运行总次数:0
代码可运行

Scrapy介绍

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。抓取网页的一般方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。

Scrapy 使用 Twisted这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。

整体架构

  • 引擎(Scrapy Engine),用来处理整个系统的数据流处理,触发事务。
  • 调度器(Scheduler),用来接受引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。
  • 下载器(Downloader),用于下载网页内容,并将网页内容返回给蜘蛛。
  • 蜘蛛(Spiders),蜘蛛是主要干活的,用它来制订特定域名或网页的解析规则。编写用于分析response并提取item(即获取到的item)或额外跟进的URL的类。 每个spider负责处理一个特定(或一些)网站。
  • 项目管道(Item Pipeline),负责处理有蜘蛛从网页中抽取的项目,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares),位于Scrapy引擎和下载器之间的钩子框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 蜘蛛中间件(Spider Middlewares),介于Scrapy引擎和蜘蛛之间的钩子框架,主要工作是处理蜘蛛的响应输入和请求输出。 调度中间件(Scheduler Middlewares),介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

爬取流程

上图绿线是数据流向,首先从初始URL开始,Scheduler会将其交给Downloader进行下载,下载之后会交给Spider进行分析,Spider分析出来的结果有两种:一种是需要进一步抓取的链接,例如之前分析的“下一页”的链接,这些东西会被传回Scheduler;另一种是需要保存的数据,它们则被送到Item Pipeline那里,那是对数据进行后期处理(详细分析、过滤、存储等)的地方。另外,在数据流动的通道里还可以安装各种中间件,进行必要的处理。

数据流

Scrapy中的数据流由执行引擎控制,其过程如下:

  1. 引擎打开一个网站(open a domain),找到处理该网站的Spider并向该spider请求第一个要爬取的URL(s)。
  2. 引擎从Spider中获取到第一个要爬取的URL并在调度器(Scheduler)以Request调度。
  3. 引擎向调度器请求下一个要爬取的URL。
  4. 调度器返回下一个要爬取的URL给引擎,引擎将URL通过下载中间件(请求(request)方向)转发给下载器(Downloader)。
  5. 一旦页面下载完毕,下载器生成一个该页面的Response,并将其通过下载中间件(返回(response)方向)发送给引擎。
  6. 引擎从下载器中接收到Response并通过Spider中间件(输入方向)发送给Spider处理。
  7. Spider处理Response并返回爬取到的Item及(跟进的)新的Request给引擎。
  8. 引擎将(Spider返回的)爬取到的Item给Item Pipeline,将(Spider返回的)Request给调度器。
  9. (从第二步)重复直到调度器中没有更多地request,引擎关闭该网站。

Scrapy项目基本流程

默认的Scrapy项目结构

使用全局命令startproject创建项目,在project_name文件夹下创建一个名为project_name的Scrapy项目。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
scrapy startproject myproject

虽然可以被修改,但所有的Scrapy项目默认有类似于下边的文件结构:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
scrapy.cfg
myproject/
    __init__.py
    items.py
    pipelines.py
    settings.py
    spiders/
        __init__.py
        spider1.py
        spider2.py
        ...

scrapy.cfg 存放的目录被认为是 项目的根目录 。该文件中包含python模块名的字段定义了项目的设置。

定义要抓取的数据

Item 是保存爬取到的数据的容器;其使用方法和python字典类似, 并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。

类似在ORM中做的一样,您可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个Item。

首先根据需要从dmoz.org(DMOZ网站是一个著名的开放式分类目录(Open DirectoryProject),由来自世界各地的志愿者共同维护与建设的最大的全球目录社区)获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑items.py 文件:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import scrapy

class DmozItem(scrapy.Item):
    title = scrapy.Field()
    link = scrapy.Field()
    desc = scrapy.Field()

使用项目命令genspider创建Spider

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
scrapy genspider <创建spider的名称> <抓取网址的域名>

使用项目命令genspider创建深度爬虫Spider

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
scrapy genspider -t crawl <创建spider的名称> <抓取网址的域名>

编写提取item数据的Spider

Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。 其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 item 的方法。 为了创建一个Spider,您必须继承 scrapy.Spider 类,且定义以下三个属性:

  • name: 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
  • start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
  • parse() 是spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import scrapy

class DmozSpider(scrapy.spider.Spider):
    name = "dmoz"    #唯一标识,启动spider时即指定该名称
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        filename = response.url.split("/")[-2]
        with open(filename, 'wb') as f:
            f.write(response.body)

进行爬取

执行项目命令crawl,启动Spider:

scrapy crawl dmoz

在这个过程中:

  • Scrapy为Spider的 start_urls 属性中的每个URL创建了 scrapy.Request 对象,并将 parse 方法作为回调函数(callback)赋值给了Request。
  • Request对象经过调度,执行生成 scrapy.http.Response 对象并送回给spider parse() 方法。

通过选择器提取数据

Selectors选择器简介: Scrapy提取数据有自己的一套机制。它们被称作选择器(seletors),因为他们通过特定的 XPath 或者 CSS 表达式来“选择” HTML文件中的某个部分。 XPath 是一门用来在XML文件中选择节点的语言,也可以用在HTML上。 CSS 是一门将HTML文档样式化的语言。选择器由它定义,并与特定的HTML元素的样式相关连。

Selector有四个基本的方法(点击相应的方法可以看到详细的API文档):

  • xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表 。
  • css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表.
  • extract(): 序列化该节点为unicode字符串并返回list。
  • re(): 根据传入的正则表达式对数据进行提取,返回unicode字符串list列表。

XPath表达式的例子和含义:

  • /html/head/title: 选择HTML文档中 标签内的 元素
  • /html/head/title/text(): 选择上面提到的 元素的文字
  • //td: 选择所有的 元素
  • //div[@class=”mine”]: 选择所有具有 class=”mine” 属性的 div 元素

提取数据: 观察HTML源码并确定合适的XPath表达式。 在查看了网页的源码后,您会发现网站的信息是被包含在 第二个元素中。 我们可以通过这段代码选择该页面中网站列表里所有元素:response.xpath(‘//ul/li’)

Item 对象是自定义的python字典。 您可以使用标准的字典语法来获取到其每个字段的值。

一般来说,Spider将会将爬取到的数据以 Item 对象返回。所以为了将爬取的数据返回,我们最终的代码将是:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import scrapy

from tutorial.items import DmozItem

class DmozSpider(scrapy.Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        for sel in response.xpath('//ul/li'):
            item = DmozItem()
            item['title'] = sel.xpath('a/text()').extract()
            item['link'] = sel.xpath('a/@href').extract()
            item['desc'] = sel.xpath('text()').extract()
            yield item

现在对dmoz.org进行爬取将会产生 DmozItem 对象。

保存数据

最简单存储爬取的数据的方式是使用 Feed exports:

scrapy crawl dmoz -o items.json

该命令将采用 JSON 格式对爬取的数据进行序列化,生成 items.json 文件。 如果需要对爬取到的item做更多更为复杂的操作,您可以编写 Item Pipeline 。类似于我们在创建项目时对Item做的,用于您编写自己的 tutorial/pipelines.py 也被创建。不过如果您仅仅想要保存item,您不需要实现任何的pipeline。

参考资料

Scrapy架构概览 初窥Scrapy Scrapy入门教程

Windows平台安装Scrapy的特别要求

安装Scrapy之前需要安装以下软件

  1. 安装Python2.7
  2. 安装pywin32(2.7版本)
  3. 安装pip 安装pip的时候,如果用户名是中文,这里会出错,找到Python安装路径里的Lib,里面的site-packages,新建一个sitecumtomize.py文件,在文件中写入 import sys sys.setdefaultencoding('gb2312')
  4. 安装lxml 安装过程如果出现问题,用lxml安装包安装lxml-3.4.2.win32-py2.7.exe
  5. 安装pyOpenSSL pip install pyOpenSSL安装
  6. 安装Scrapy pip install Scrapy安装
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018年06月08日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
开源python网络爬虫框架Scrapy
所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。
py3study
2020/01/07
1.8K0
(原创)七夜在线音乐台开发 第三弹 爬虫篇
上一篇咱们讲到了七夜音乐台的需求和所需要的技术。咱们今天就讲一下爬虫,为什么要讲爬虫,因为音乐台的数据源需要通过爬虫来获取,不可能手动来下载。下图是一个网络爬虫的基本框架: 网络爬虫的基本工作流程如下
七夜安全博客
2018/06/26
1.1K0
scrapy初试
定义item Item是保存爬取到的数据的容器;其使用方法和python字典类似, 并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。 类似在ORM中做的一样,您可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field的类属性来定义一个Item。 (如果不了解ORM, 不用担心,您会发现这个步骤非常简单) 首先根据需要从dmoz.org获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑 tutorial 目录中的 items.py 文件:
爱撒谎的男孩
2019/12/30
3580
Python爬虫之scrapy框架
里面的parse方法,这个方法有两个作用 1.负责解析start_url下载的Response 对象,根据item提取数据(解析item数据的前提是parse里全部requests请求都被加入了爬取队列) 2.如果有新的url则加入爬取队列,负责进一步处理,URL的Request 对象 这两点简单来说就是编写爬虫的主要部分
yuanshuai
2022/08/22
3380
Python爬虫之scrapy框架
爬虫——scrapy入门
scrapy 安装scrapy pip install scrapy windows可能安装失败,需要先安装c++库或twisted,pip install twisted 创建项目 scrapy startproject tutorial 该命令将会创建包含下列内容的 tutorial 目录: tutorial/ scrapy.cfg tutorial/ __init__.py items.py pipelines.py
py3study
2020/01/19
5770
爬虫框架 Scrapy 知识点简介
Scrapy框架因为功能十分强大,所以依赖很多库,不能直接安装,需要先安装依赖库,因为我的电脑在Windows下,所以这里展示Windows下的安装方法(如果有其他平台的需要,欢迎给我留言我在发出来)。
数据STUDIO
2022/04/11
3210
爬虫框架 Scrapy 知识点简介
开启Scrapy爬虫之路
七夜大佬的《python爬虫开发与项目实战》,买了好多年了,学习了好多东西,基本上爬虫都是在这里面学的,后期的scrapy框架爬虫一直不得门而入,前段时间补了下面向对象的知识,今天突然顿悟了!写个笔记记录下学习过程
诡途
2020/10/16
7500
开启Scrapy爬虫之路
精通Python爬虫框架Scrapy_php爬虫框架哪个好用
讲解Scrapy框架之前,为了让读者更明白Scrapy,我会贴一些网站的图片和代码。 但是,【注意!!!】 【以下网站图片和代码仅供展示!!如果大家需要练习,请自己再找别的网站练习。】 【尤其是政府网站,千万不能碰哦!】
全栈程序员站长
2022/11/01
1.2K0
爬虫框架Scrapy(一)
Absorb what is useful. Discard what is not. Add what is uniquely your own.
小闫同学啊
2019/07/18
1.3K0
爬虫框架Scrapy(一)
scrapy框架爬虫_bootstrap是什么框架
Scrapy主要包括了以下组件: • 引擎(Scrapy): 用来处理整个系统的数据流,触发事务(框架核心); • 调度器(Scheduler): 用来接受引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列,由它来决定下一个要抓取的网址是什么,同时去除重复的网址; • 下载器(Downloader): 用于下载网页内容,并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的); • 爬虫(Spiders): 爬虫是主要干活的,用于从特定的网页中提取自己需要的信息,即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面; • 项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据; • 下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应; • 爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出; • 调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
全栈程序员站长
2022/09/27
6680
python爬虫 scrapy爬虫框架的基本使用
在编写爬虫的时候,如果我们使用 requests、aiohttp 等库,需要从头至尾把爬虫完整地实现一遍,比如说异常处理、爬取调度等,如果写的多了,的确会比较麻烦。利用现有的爬虫框架,可以提高编写爬虫的效率,而说到 Python 的爬虫框架,Scrapy 当之无愧是最流行最强大的爬虫框架了。
叶庭云
2020/09/17
1.6K0
scrapy框架
scrapy genspider 应用名称 爬取网页的起始url (例如:scrapy genspider qiubai www.qiushibaike.com)
全栈程序员站长
2022/09/07
1.6K0
scrapy框架
Python 爬虫之Scrapy《上》
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
Wu_Candy
2022/07/04
3670
Python 爬虫之Scrapy《上》
爬虫框架Scrapy总结笔记
由于工作需要,学习一下爬虫框架,在网上看了别人的笔记和教学视频,想总结一下便于以后复习用,然后和大家分享一下。
木野归郎
2021/03/11
4940
爬虫框架Scrapy总结笔记
Scrapy爬取数据初识
Scrapy爬取数据初识 初窥Scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。 基本步骤 选择一个网站 定义您想抓取的数据 编写提取数据的Spider 执行spider,获取数据 查看提取到的数据 安装 控制台执行命令p
听城
2018/04/27
1.7K0
Scrapy爬取数据初识
Scrapy制作爬虫
编写爬虫: 通过爬虫语言框架制作一个爬虫程序 import scrapy from tutorial.items import DmozItem class DmozSpider(scrapy.Spider): name = 'dmoz' allowed_domains = ['dmoz.org'] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
用户6172015
2020/11/03
4090
scrapy 入门_scrapy官方文档
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
全栈程序员站长
2022/09/20
1K0
Scrapy:python3下的第一次运
1,引言 《Scrapy的架构初探》一文讲解了Scrapy的架构,本文就实际来安装运行一下Scrapy爬虫。本文以官网的tutorial作为例子,完整的代码可以在github上下载。 2,运行环境配置
py3study
2020/01/06
3340
Scrapy入门
当页面被爬虫解析所需的数据存入Item后,将被发送到项目管道(Pipeline),并经过几个特定的次序处理数据,最后存入本地文件或存入数据库
待你如初见
2019/03/20
7010
Scrapy入门
爬虫框架Scrapy的第一个爬虫示例入门教程
豌豆贴心提醒,本文阅读时间8分钟 我们使用dmoz.org这个网站来作为小抓抓一展身手的对象。 首先先要回答一个问题。 问:把网站装进爬虫里,总共分几步? 答案很简单,四步: 新建项目 (Project):新建一个新的爬虫项目 明确目标(Items):明确你想要抓取的目标 制作爬虫(Spider):制作爬虫开始爬取网页 存储内容(Pipeline):设计管道存储爬取内容 好的,基本流程既然确定了,那接下来就一步一步的完成就可以了。 1.新建项目(Project) 在空目录下按住Shift键右击,选择
小小科
2018/05/03
1.2K0
爬虫框架Scrapy的第一个爬虫示例入门教程
相关推荐
开源python网络爬虫框架Scrapy
更多 >
LV.1
这个人很懒,什么都没有留下~
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验