前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >loj#6073. 「2017 山东一轮集训 Day5」距离(树链剖分 主席树)

loj#6073. 「2017 山东一轮集训 Day5」距离(树链剖分 主席树)

作者头像
attack
发布2019-04-01 11:32:24
3550
发布2019-04-01 11:32:24
举报
文章被收录于专栏:数据结构与算法

题意

题目链接

Sol

首先对询问差分一下,我们就只需要统计\(u, v, lca(u, v), fa[lca(u, v)]\)到根的路径的贡献。

再把每个点与\(k\)的lca的距离差分一下,则只需要统计每个点与\(k\)的lca深度。这个东西等价于所有的链与\(k\)到根的链的并。

树剖+主席树维护一下。这题的主席树需要区间加1,可以标记永久化合并标记

复杂度\(O(n\log ^2n)\)

代码语言:javascript
复制
#include<bits/stdc++.h> 
#define Pair pair<LL, LL>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long 
#define LL long long 
#define ull unsigned long long 
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 2e5 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename A> A inv(A x) {return fp(x, mod - 2);}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
LL lastans;
int type, N, Q, p[MAXN], fa[MAXN], top[MAXN], dep[MAXN], son[MAXN], siz[MAXN], dfn[MAXN], rev[MAXN], times;
LL Esum[MAXN], sdis[MAXN], valE[MAXN];
vector<Pair> v[MAXN];
void dfs(int x, int _fa) {
    fa[x] = _fa; dep[x] = dep[_fa] + 1; siz[x] = 1;
    for(auto &tmp : v[x]) {
        int to = tmp.first, w = tmp.se;
        if(to == _fa) continue;
        Esum[to] = Esum[x] + w; valE[to] =  w;
        dfs(to, x);
        siz[x] += siz[to];
        if(siz[to] > siz[son[x]]) son[x] = to;
    }
}
void dfs2(int x, int topf) {
    top[x] = topf; dfn[x] = ++times; rev[times] = x;
    if(!son[x]) return ;
    dfs2(son[x], topf);
    for(auto &to : v[x]) {
        if(top[to.fi]) continue;
        dfs2(to.fi, to.fi);
    }
}
int LCA(int x, int y) {
    while(top[x] ^ top[y]) {
        if(dep[top[x]] < dep[top[y]]) swap(x, y); 
        x = fa[top[x]];
    }
    return dep[x] < dep[y] ? x : y;
}
int rt[MAXN], ls[MAXN * 80], rs[MAXN * 80], cnt;
LL sumc[MAXN * 80], sum[MAXN * 80], lzy[MAXN * 80];
void Build(int &k, int l, int r) {
    k = ++cnt;
    if(l == r) {sumc[k] = valE[rev[l]]; return ;}
    int mid = l + r >> 1;
    Build(ls[k], l, mid); Build(rs[k], mid + 1, r);
    sumc[k] = sumc[ls[k]] + sumc[rs[k]];
}
Pair operator + (const Pair a, const Pair b) {
    return {a.fi + b.fi, a.se + b.se};
}
void Add(int &k, int l, int r, int ql, int qr) {
    ++cnt; int nw = cnt;
    ls[nw] = ls[k]; rs[nw] = rs[k]; sumc[nw] = sumc[k];
    sum[nw] = sum[k]; lzy[nw] = lzy[k];
    k = cnt;
    if(ql <= l && r <= qr) {
        lzy[k]++, sum[k] += sumc[k];
        return ;
    }
    int mid = l + r >> 1;
    if(ql <= mid) Add(ls[k], l, mid, ql, qr);
    if(qr  > mid) Add(rs[k], mid + 1, r, ql, qr);
    sum[k] = sum[ls[k]] + sum[rs[k]] + lzy[k] * sumc[k];
}
Pair Query(int k, int l, int r, int ql, int qr) {
    if(ql <= l && r <= qr) return {sum[k], sumc[k]};
    Pair res = {0, 0};
    int mid = l + r >> 1;
    if(ql <= mid) res = res + Query(ls[k], l, mid, ql, qr);
    if(qr  > mid) res = res + Query(rs[k], mid + 1, r, ql, qr);
    res.fi += 1ll * res.se * lzy[k];
    return res;
}
void insert(int x) {
    int pre = x;
    rt[x] = rt[fa[x]]; 
    x = p[x];
    while(x)Add(rt[pre], 1, N, dfn[top[x]], dfn[x]), x = fa[top[x]];
}
void dfs3(int x, int fa) {
    sdis[x] = sdis[fa] + Esum[p[x]];
    insert(x);
    for(auto &to : v[x]) 
        if(to.fi != fa) dfs3(to.fi, x);
}

LL solve(int u, int k) {
    if(!k) return 0;
    LL res = sdis[k] + 1ll * dep[k] * Esum[u];
    while(u) {
        res -= Query(rt[k], 1, N, dfn[top[u]], dfn[u]).fi << 1;
        u = fa[top[u]];
    }
    return res;
}
signed main() {
    type = read(); N = read(); Q = read();
    for(int i = 1; i <= N - 1; i++) {
        int x = read(),y = read(), w = read();
        v[x].push_back({y, w});
        v[y].push_back({x, w});
    }
    for(int i = 1; i <= N; i++) p[i] = read();
    dfs(1, 0);
    dfs2(1, 1);
    Build(rt[0], 1, N);
    dfs3(1, 0);
    while(Q--) {
        int tu = read() ^ (lastans * type), tv = read() ^ (lastans * type), tk = read() ^ (lastans * type);
        lastans = solve(tk, tu) + solve(tk, tv) - solve(tk, LCA(tu, tv)) - solve(tk, fa[LCA(tu, tv)]);
        cout << lastans << '\n';
    }
    return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-03-29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 题意
  • Sol
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档