Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >深度学习论文资源(截至2016年)

深度学习论文资源(截至2016年)

作者头像
GavinZhou
发布于 2019-05-26 11:50:51
发布于 2019-05-26 11:50:51
7820
举报

从全局到枝干、从经典到前沿、从理论到应用、还有最新的研究…,所有你不需要的需要的,现在不需要的未来需要的,你不需要的周边小伙伴需要的…反正全都在这了。拿走不谢,就在AI科技大本营。

整理 | AI科技大本营(rgznai100)

参考 – https://zhuanlan.zhihu.com/p/23080129

对于大多数想上手深度学习的小伙伴来说,“我应当从那篇论文开始读起?”

这是一个亘古不变的话题。

而对那些已经入门的同学来说,了解一下不同方向的论文,也是不时之需。

有没有一份完整的深度学习论文导引,让所有人都可以在里面找到想要的内容呢?

有!

今天就给大家分享一篇史上最牛的深度学习论文整合合集。它让大家对整个深度学习领域及其个枝干都能有一个相对完整的理解。

这份阅读列表的组织原则是这样的:

  • 从全局到枝干: 从综述类、全局性的文章到细分领域的具体论文。
  • 从经典到最前沿: 每个话题的文章都是按时间顺序来排的,可以清晰给出每个方向的发展脉络。
  • 从通用理论到具体应用: 有些论文是针对深度学习通用理论的,有些论文章则针对具体的应用领域。
  • 专注于最先进的研究: 收集有许多最新论文,保证阅读列表的时效性。

当然,这里的每个话题都只选几篇最具代表性的论文,深入研究的话,还需要更进一步的阅读。

基于这些论文的影响力,你会发现很多新近发表的文章也值得一读。 此外,这份阅读列表在原文页面会不断更新,值得你时时备查。

https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap

想一键打包下载所有的论文?没问题, AI科技大本营已经给你准备好了懒人专属通道。请在公众号会话回复“ 路径 ”,即可获取本文所有论文PDF资料。

1. 深度学习基础及历史

1.0 书

[0] 深度学习圣经 ★★★★★

Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. “Deep learning.” An MIT Press book. (2015).

https://github.com/HFTrader/DeepLearningBook/raw/master/DeepLearningBook.pdf

1.1 报告

[1] 三巨头报告 ★★★★★

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature 521.7553 (2015): 436-444.

http://www.cs.toronto.edu/%7Ehinton/absps/NatureDeepReview.pdf

1.2 深度信念网络 (DBN)

[2] 深度学习前夜的里程碑 ★★★

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep belief nets.” Neural computation 18.7 (2006): 1527-1554.

http://www.cs.toronto.edu/%7Ehinton/absps/ncfast.pdf

[3] 展示深度学习前景的里程碑 ★★★

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the dimensionality of data with neural networks.” Science 313.5786 (2006): 504-507.

http://www.cs.toronto.edu/%7Ehinton/science.pdf

1.3 ImageNet革命(深度学习大爆炸)

[4] AlexNet的深度学习突破 ★★★

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[5] VGGNet深度神经网络出现 ★★★

Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).

https://arxiv.org/pdf/1409.1556.pdf

[6] GoogLeNet ★★★

Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf

[7] ResNet极深度神经网络,CVPR最佳论文 ★★★★★

He, Kaiming, et al. “Deep residual learning for image recognition.” arXiv preprint arXiv:1512.03385 (2015).

https://arxiv.org/pdf/1512.03385.pdf

1.4 语音识别革命
[8] 语音识别突破 ★★★★

Hinton, Geoffrey, et al. “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.” IEEE Signal Processing Magazine 29.6 (2012): 82-97.

http://cs224d.stanford.edu/papers/maas_paper.pdf

[9] RNN论文 ★★★

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with deep recurrent neural networks.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.

http://arxiv.org/pdf/1303.5778.pdf

[10] 端对端RNN语音识别 ★★★

Graves, Alex, and Navdeep Jaitly. “Towards End-To-End Speech Recognition with Recurrent Neural Networks.” ICML. Vol. 14. 2014.

http://www.jmlr.org/proceedings/papers/v32/graves14.pdf

[11] Google语音识别系统论文 ★★★

Sak, Haşim, et al. “Fast and accurate recurrent neural network acoustic models for speech recognition.” arXiv preprint arXiv:1507.06947 (2015).

http://arxiv.org/pdf/1507.06947

[12] 百度语音识别系统论文 ★★★★

Amodei, Dario, et al. “Deep speech 2: End-to-end speech recognition in english and mandarin.” arXiv preprint arXiv:1512.02595 (2015).

https://arxiv.org/pdf/1512.02595.pdf

[13] 来自微软的当下最先进的语音识别论文 ★★★★

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig “Achieving Human Parity in Conversational Speech Recognition.” arXiv preprint arXiv:1610.05256 (2016).

https://arxiv.org/pdf/1610.05256v1

读完上面这些论文,你将对 深度学习的历史、深度学习模型(CNN、RNN、LSTM等)的基本架构 有一个基本认识, 并能理解深度学习是如何解决图像及语音识别问题的 。接下来的 论文将 带你深入理解深度学习方法、深度学习在前沿领域的不同应用。根据自己的兴趣和研究方向选择阅读即可:

2. 深度学习方法
2.1 模型
[14] Dropout ★★★

Hinton, Geoffrey E., et al. “Improving neural networks by preventing co-adaptation of feature detectors.” arXiv preprint arXiv:1207.0580 (2012).

https://arxiv.org/pdf/1207.0580.pdf

[15] 过拟合 ★★★

Srivastava, Nitish, et al. “Dropout: a simple way to prevent neural networks from overfitting.” Journal of Machine Learning Research 15.1 (2014): 1929-1958.

http://www.jmlr.org/papers/volume15/srivastava14a.old/source/srivastava14a.pdf

[16] Batch归一化——2015年杰出成果 ★★★★

Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).

http://arxiv.org/pdf/1502.03167

[17] Batch归一化的升级 ★★★★

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer normalization.” arXiv preprint arXiv:1607.06450 (2016).

https://arxiv.org/pdf/1607.06450.pdf

[18] 快速训练新模型 ★★★

Courbariaux, Matthieu, et al. “Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1.”

https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf

[19] 训练方法创新 ★★★★★

Jaderberg, Max, et al. “Decoupled neural interfaces using synthetic gradients.” arXiv preprint arXiv:1608.05343 (2016).

https://arxiv.org/pdf/1608.05343

[20] 修改预训练网络以降低训练耗时 ★★★

Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. “Net2net: Accelerating learning via knowledge transfer.” arXiv preprint arXiv:1511.05641 (2015).

https://arxiv.org/abs/1511.05641

[21] 修改预训练网络以降低训练耗时 ★★★

Wei, Tao, et al. “Network Morphism.” arXiv preprint arXiv:1603.01670 (2016).

https://arxiv.org/abs/1603.01670

2.2 优化

[22] 动量优化器 ★★

Sutskever, Ilya, et al. “On the importance of initialization and momentum in deep learning.” ICML (3) 28 (2013): 1139-1147.

http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

[23] 可能是当前使用最多的随机优化 ★★★

Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint arXiv:1412.6980 (2014).

http://arxiv.org/pdf/1412.6980

[24] 神经优化器 ★★★★★

Andrychowicz, Marcin, et al. “Learning to learn by gradient descent by gradient descent.” arXiv preprint arXiv:1606.04474 (2016).

https://arxiv.org/pdf/1606.04474

[25] ICLR最佳论文,让神经网络运行更快的新方向 ★★★★★

Han, Song, Huizi Mao, and William J. Dally. “Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding.” CoRR, abs/1510.00149 2 (2015).

https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf

[26] 优化神经网络的另一个新方向 ★★★★

Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<1MB model size.” arXiv preprint arXiv:1602.07360 (2016).

http://arxiv.org/pdf/1602.07360

2.3 无监督学习 / 深度生成式模型

[27] Google Brain找猫的里程碑论文,吴恩达 ★★★★

Le, Quoc V. “Building high-level features using large scale unsupervised learning.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.

http://arxiv.org/pdf/1112.6209.pdf

[28] 变分自编码机 (VAE) ★★★★

Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).

http://arxiv.org/pdf/1312.6114

[29] 生成式对抗网络 (GAN) ★★★★★

Goodfellow, Ian, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[30] 解卷积生成式对抗网络 (DCGAN) ★★★★

Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv preprint arXiv:1511.06434 (2015).

http://arxiv.org/pdf/1511.06434

[31] Attention机制的变分自编码机 ★★★★★

Gregor, Karol, et al. “DRAW: A recurrent neural network for image generation.” arXiv preprint arXiv:1502.04623 (2015).

http://jmlr.org/proceedings/papers/v37/gregor15.pdf

[32] PixelRNN ★★★★

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks.” arXiv preprint arXiv:1601.06759 (2016).

http://arxiv.org/pdf/1601.06759

[33] PixelCNN ★★★★

Oord, Aaron van den, et al. “Conditional image generation with PixelCNN decoders.” arXiv preprint arXiv:1606.05328 (2016).

https://arxiv.org/pdf/1606.05328

2.4 RNN / 序列到序列模型

[34] RNN的生成式序列,LSTM ★★★★

Graves, Alex. “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).

http://arxiv.org/pdf/1308.0850

[35] 第一份序列到序列论文 ★★★★

Cho, Kyunghyun, et al. “Learning phrase representations using RNN encoder-decoder for statistical machine translation.” arXiv preprint arXiv:1406.1078 (2014).

http://arxiv.org/pdf/1406.1078

[36] 神经网络的序列到序列学习 ★★★★★

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014.

http://papers.nips.cc/paper/5346-information-based-learning-by-agents-in-unbounded-state-spaces.pdf

[37] 神经机器翻译 ★★★★

Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. “Neural Machine Translation by Jointly Learning to Align and Translate.” arXiv preprint arXiv:1409.0473 (2014).

https://arxiv.org/pdf/1409.0473v7.pdf

[38] 序列到序列Chatbot ★★★

Vinyals, Oriol, and Quoc Le. “A neural conversational model.” arXiv preprint arXiv:1506.05869 (2015).

http://arxiv.org/pdf/1506.05869.pdf%20(http://arxiv.org/pdf/1506.05869.pdf

2.5 神经网络图灵机
[39] 未来计算机的基本原型 ★★★★★

Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014).

http://arxiv.org/pdf/1410.5401.pdf

[40] 强化学习神经图灵机 ★★★

Zaremba, Wojciech, and Ilya Sutskever. “Reinforcement learning neural Turing machines.” arXiv preprint arXiv:1505.00521 362 (2015).

https://pdfs.semanticscholar.org/f10e/071292d593fef939e6ef4a59baf0bb3a6c2b.pdf

[41] 记忆网络 ★★★

Weston, Jason, Sumit Chopra, and Antoine Bordes. “Memory networks.” arXiv preprint arXiv:1410.3916 (2014).

http://arxiv.org/pdf/1410.3916

[42] 端对端记忆网络 ★★★★

Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. “End-to-end memory networks.” Advances in neural information processing systems. 2015.

http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

[43] 指针网络 ★★★★

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. “Pointer networks.” Advances in Neural Information Processing Systems. 2015.

http://papers.nips.cc/paper/5866-pointer-networks.pdf

[44] 整合神经网络图灵机概念的里程碑论文 ★★★★★

Graves, Alex, et al. “Hybrid computing using a neural network with dynamic external memory.” Nature (2016).

https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf

2.6 深度强化学习

[45] 第一篇以深度强化学习为名的论文 ★★★★

Mnih, Volodymyr, et al. “Playing atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602 (2013).

http://arxiv.org/pdf/1312.5602.pdf

[46] 里程碑 ★★★★★

Mnih, Volodymyr, et al. “Human-level control through deep reinforcement learning.” Nature 518.7540 (2015): 529-533.

https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf

[47] ICLR最佳论文 ★★★★

Wang, Ziyu, Nando de Freitas, and Marc Lanctot. “Dueling network architectures for deep reinforcement learning.” arXiv preprint arXiv:1511.06581 (2015).

http://arxiv.org/pdf/1511.06581

[48] 当前最先进的深度强化学习方法 ★★★★★

Mnih, Volodymyr, et al. “Asynchronous methods for deep reinforcement learning.” arXiv preprint arXiv:1602.01783 (2016).

http://arxiv.org/pdf/1602.01783

[49] DDPG ★★★★

Lillicrap, Timothy P., et al. “Continuous control with deep reinforcement learning.” arXiv preprint arXiv:1509.02971 (2015).

http://arxiv.org/pdf/1509.02971

[50] NAF ★★★★

Gu, Shixiang, et al. “Continuous Deep Q-Learning with Model-based Acceleration.” arXiv preprint arXiv:1603.00748 (2016).

http://arxiv.org/pdf/1603.00748

[51] TRPO ★★★★

Schulman, John, et al. “Trust region policy optimization.” CoRR, abs/1502.05477 (2015).

http://www.jmlr.org/proceedings/papers/v37/schulman15.pdf

[52] AlphaGo ★★★★★

Silver, David, et al. “Mastering the game of Go with deep neural networks and tree search.” Nature 529.7587 (2016): 484-489.

http://willamette.edu/%7Elevenick/cs448/goNature.pdf

2.7 深度迁移学习 / 终生学习 / 强化学习
[53] Bengio教程 ★★★

Bengio, Yoshua. “Deep Learning of Representations for Unsupervised and Transfer Learning.” ICML Unsupervised and Transfer Learning 27 (2012): 17-36.

http://www.jmlr.org/proceedings/papers/v27/bengio12a/bengio12a.pdf

[54] 终生学习的简单讨论 ★★★

Silver, Daniel L., Qiang Yang, and Lianghao Li. “Lifelong Machine Learning Systems: Beyond Learning Algorithms.” AAAI Spring Symposium: Lifelong Machine Learning. 2013.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7800&rep=rep1&type=pdf

[55] Hinton、Jeff Dean大神研究 ★★★★

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network.” arXiv preprint arXiv:1503.02531 (2015).

http://arxiv.org/pdf/1503.02531

[56] 强化学习策略 ★★★

Rusu, Andrei A., et al. “Policy distillation.” arXiv preprint arXiv:1511.06295 (2015).

http://arxiv.org/pdf/1511.06295

[57] 多任务深度迁移强化学习 ★★★

Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. “Actor-mimic: Deep multitask and transfer reinforcement learning.” arXiv preprint arXiv:1511.06342 (2015).

http://arxiv.org/pdf/1511.06342

[58] 累进式神经网络 ★★★★★

Rusu, Andrei A., et al. “Progressive neural networks.” arXiv preprint arXiv:1606.04671 (2016).

https://arxiv.org/pdf/1606.04671

2.8 一次性深度学习
[59] 不涉及深度学习,但值得一读 ★★★★★

Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level concept learning through probabilistic program induction.” Science 350.6266 (2015): 1332-1338.

http://clm.utexas.edu/compjclub/wp-content/uploads/2016/02/lake2015.pdf

[60] 一次性图像识别 ★★★

Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-shot Image Recognition.”(2015)

http://www.cs.utoronto.ca/%7Egkoch/files/msc-thesis.pdf

[61] 一次性学习基础 ★★★★

Santoro, Adam, et al. “One-shot Learning with Memory-Augmented Neural Networks.” arXiv preprint arXiv:1605.06065 (2016).

http://arxiv.org/pdf/1605.06065

[62] 一次性学习网络 ★★★

Vinyals, Oriol, et al. “Matching Networks for One Shot Learning.” arXiv preprint arXiv:1606.04080 (2016).

https://arxiv.org/pdf/1606.04080

[63] 大型数据 ★★★★

Hariharan, Bharath, and Ross Girshick. “Low-shot visual object recognition.” arXiv preprint arXiv:1606.02819 (2016).

http://arxiv.org/pdf/1606.02819

3. 应用

3.1 自然语言处理 (NLP)

[1] ★★★★

Antoine Bordes, et al. “Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing.” AISTATS(2012)

https://www.hds.utc.fr/%7Ebordesan/dokuwiki/lib/exe/fetch.php?id=en%3Apubli&cache=cache&media=en:bordes12aistats.pdf

[2] ★★★

word2vec

Mikolov, et al. “Distributed representations of words and phrases and their compositionality.” ANIPS(2013): 3111-3119

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

[3] ★★★

Sutskever, et al. “Sequence to sequence learning with neural networks.” ANIPS(2014)

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

[4] ★★★★

Ankit Kumar, et al. “Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.” arXiv preprint arXiv:1506.07285(2015)

https://arxiv.org/abs/1506.07285

[5] ★★★★

Yoon Kim, et al. “Character-Aware Neural Language Models.” NIPS(2015) arXiv preprint arXiv:1508.06615(2015)

https://arxiv.org/abs/1508.06615

[6] bAbI任务 ★★★

Jason Weston, et al. “Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks.” arXiv preprint arXiv:1502.05698(2015)

https://arxiv.org/abs/1502.05698

[7] CNN / DailyMail 风格对比 ★★

Karl Moritz Hermann, et al. “Teaching Machines to Read and Comprehend.” arXiv preprint arXiv:1506.03340(2015)

https://arxiv.org/abs/1506.03340

[8] 当前最先进的文本分类 ★★★

Alexis Conneau, et al. “Very Deep Convolutional Networks for Natural Language Processing.” arXiv preprint arXiv:1606.01781(2016)

https://arxiv.org/abs/1606.01781

[9] 稍次于最先进方案,但速度快很多 ★★★

Armand Joulin, et al. “Bag of Tricks for Efficient Text Classification.” arXiv preprint arXiv:1607.01759(2016)

https://arxiv.org/abs/1607.01759

3.2 目标检测

[1] ★★★

Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. “Deep neural networks for object detection.” Advances in Neural Information Processing Systems. 2013.

http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

[2] RCNN ★★★ ★★

Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.

http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

[3] SPPNet ★★★ ★

He, Kaiming, et al. “Spatial pyramid pooling in deep convolutional networks for visual recognition.” European Conference on Computer Vision. Springer International Publishing, 2014.

http://arxiv.org/pdf/1406.4729

[4] ★★★ ★

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

https://pdfs.semanticscholar.org/8f67/64a59f0d17081f2a2a9d06f4ed1cdea1a0ad.pdf

[5] ★★★ ★

Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in neural information processing systems. 2015.

http://papers.nips.cc/paper/5638-analysis-of-variational-bayesian-latent-dirichlet-allocation-weaker-sparsity-than-map.pdf

[6] 相当实用的YOLO项目 ★★★ ★★

Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” arXiv preprint arXiv:1506.02640 (2015).

http://homes.cs.washington.edu/%7Eali/papers/YOLO.pdf

[7] ★★★

Liu, Wei, et al. “SSD: Single Shot MultiBox Detector.” arXiv preprint arXiv:1512.02325 (2015).

http://arxiv.org/pdf/1512.02325

[8] ★★★ ★

Dai, Jifeng, et al. “R-FCN: Object Detection via Region-based Fully Convolutional Networks.” arXiv preprint arXiv:1605.06409 (2016).

https://arxiv.org/abs/1605.06409

[9] ★★★ ★

He, Gkioxari, et al. “Mask R-CNN” arXiv preprint arXiv:1703.06870 (2017).

https://arxiv.org/abs/1703.06870

3.3 视觉追踪

[1] 第一份采用深度学习的视觉追踪论文,DLT追踪器 ★★★

Wang, Naiyan, and Dit-Yan Yeung. “Learning a deep compact image representation for visual tracking.” Advances in neural information processing systems. 2013.

http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf

[2] SO-DLT ★★★ ★

Wang, Naiyan, et al. “Transferring rich feature hierarchies for robust visual tracking.” arXiv preprint arXiv:1501.04587 (2015).

http://arxiv.org/pdf/1501.04587

[3] FCNT ★★★ ★

Wang, Lijun, et al. “Visual tracking with fully convolutional networks.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Wang_Visual_Tracking_With_ICCV_2015_paper.pdf

[4] 跟深度学习一样快的非深度学习方法,GOTURN ★★★ ★

Held, David, Sebastian Thrun, and Silvio Savarese. “Learning to Track at 100 FPS with Deep Regression Networks.” arXiv preprint arXiv:1604.01802 (2016).

http://arxiv.org/pdf/1604.01802

[5] 新的最先进的实时目标追踪方案 SiameseFC ★★★ ★

Bertinetto, Luca, et al. “Fully-Convolutional Siamese Networks for Object Tracking.” arXiv preprint arXiv:1606.09549 (2016).

https://arxiv.org/pdf/1606.09549

[6] C-COT ★★★ ★

Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. “Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking.” ECCV (2016)

http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/C-COT_ECCV16.pdf

[7] VOT2016大赛冠军 TCNN ★★★ ★

Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. “Modeling and Propagating CNNs in a Tree Structure for Visual Tracking.” arXiv preprint arXiv:1608.07242 (2016).

https://arxiv.org/pdf/1608.07242

3.4 图像标注

[1] ★★★

Farhadi,Ali,etal. “Every picture tells a story: Generating sentences from images”. In Computer VisionECCV 201 match 0. Sp match ringer Berlin Heidelberg:15-29, 2010.

https://www.cs.cmu.edu/%7Eafarhadi/papers/sentence.pdf

[2] ★★★ ★

Kulkarni, Girish, et al. “Baby talk: Understanding and generating image descriptions”. In Proceedings of the 24th CVPR, 2011.

http://tamaraberg.com/papers/generation_cvpr11.pdf

[3] ★★★

Vinyals, Oriol, et al. “Show and tell: A neural image caption generator”. In arXiv preprint arXiv:1411.4555, 2014.

https://arxiv.org/pdf/1411.4555.pdf

[4] RNN视觉识别与标注

Donahue, Jeff, et al. “Long-term recurrent convolutional networks for visual recognition and description”. In arXiv preprint arXiv:1411.4389 ,2014.

https://arxiv.org/pdf/1411.4389.pdf

[5] 李飞飞及高徒Andrej Karpathy ★★★ ★★

Karpathy, Andrej, and Li Fei-Fei. “Deep visual-semantic alignments for generating image descriptions”. In arXiv preprint arXiv:1412.2306, 2014.

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

[6] 李飞飞及高徒Andrej Karpathy ★★★ ★

Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. “Deep fragment embeddings for bidirectional image sentence mapping”. In Advances in neural information processing systems, 2014.

https://arxiv.org/pdf/1406.5679v1.pdf

[7] ★★★ ★

Fang, Hao, et al. “From captions to visual concepts and back”. In arXiv preprint arXiv:1411.4952, 2014.

https://arxiv.org/pdf/1411.4952v3.pdf

[8] ★★★ ★

Chen, Xinlei, and C. Lawrence Zitnick. “Learning a recurrent visual representation for image caption generation”. In arXiv preprint arXiv:1411.5654, 2014.

https://arxiv.org/pdf/1411.5654v1.pdf

[9] ★★★

Mao, Junhua, et al. “Deep captioning with multimodal recurrent neural networks (m-rnn)”. In arXiv preprint arXiv:1412.6632, 2014.

https://arxiv.org/pdf/1412.6632v5.pdf

[10] ★★★ ★★

Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual attention”. In arXiv preprint arXiv:1502.03044, 2015.

https://arxiv.org/pdf/1502.03044v3.pdf

3.5 机器翻译

本话题的部分里程碑论文列在 2.4 “RNN / 序列到序列模型”话题下。

[1] ★★★ ★

Luong, Minh-Thang, et al. “Addressing the rare word problem in neural machine translation.” arXiv preprint arXiv:1410.8206 (2014).

http://arxiv.org/pdf/1410.8206

[2] ★★★

Sennrich, et al. “Neural Machine Translation of Rare Words with Subword Units”. In arXiv preprint arXiv:1508.07909, 2015.

https://arxiv.org/pdf/1508.07909.pdf

[3] ★★★ ★

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. “Effective approaches to attention-based neural machine translation.” arXiv preprint arXiv:1508.04025 (2015).

http://arxiv.org/pdf/1508.04025

[4] ★★

Chung, et al. “A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation”. In arXiv preprint arXiv:1603.06147, 2016.

https://arxiv.org/pdf/1603.06147.pdf

[5] ★★★ ★★

Lee, et al. “Fully Character-Level Neural Machine Translation without Explicit Segmentation”. In arXiv preprint arXiv:1610.03017, 2016.

https://arxiv.org/pdf/1610.03017.pdf

[6] 里程碑 ★★★ ★

Wu, Schuster, Chen, Le, et al. “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation”. In arXiv preprint arXiv:1609.08144v2, 2016.

https://arxiv.org/pdf/1609.08144v2.pdf

3.6 机器人

[1] ★★★

Koutník, Jan, et al. “Evolving large-scale neural networks for vision-based reinforcement learning.” Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013.

http://repository.supsi.ch/4550/1/koutnik2013gecco.pdf

[2] ★★★ ★★

Levine, Sergey, et al. “End-to-end training of deep visuomotor policies.” Journal of Machine Learning Research 17.39 (2016): 1-40.

http://www.jmlr.org/papers/volume17/15-522/15-522.pdf

[3] ★★★

Pinto, Lerrel, and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours.” arXiv preprint arXiv:1509.06825 (2015).

http://arxiv.org/pdf/1509.06825

[4] ★★★ ★

Levine, Sergey, et al. “Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection.” arXiv preprint arXiv:1603.02199 (2016).

http://arxiv.org/pdf/1603.02199

[5] ★★★ ★

Zhu, Yuke, et al. “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning.” arXiv preprint arXiv:1609.05143 (2016).

https://arxiv.org/pdf/1609.05143

[6] ★★★ ★

Yahya, Ali, et al. “Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search.” arXiv preprint arXiv:1610.00673 (2016).

https://arxiv.org/pdf/1610.00673

[7] ★★★ ★

Gu, Shixiang, et al. “Deep Reinforcement Learning for Robotic Manipulation.” arXiv preprint arXiv:1610.00633 (2016).

https://arxiv.org/pdf/1610.00633

[8] ★★★ ★

A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell.”Sim-to-Real Robot Learning from Pixels with Progressive Nets.” arXiv preprint arXiv:1610.04286 (2016).

https://arxiv.org/pdf/1610.04286.pdf

[9] ★★★ ★

Mirowski, Piotr, et al. “Learning to navigate in complex environments.” arXiv preprint arXiv:1611.03673 (2016).

https://arxiv.org/pdf/1611.03673

3.7 艺术

[1] Google Deep Dream ★★★ ★

Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). “Inceptionism: Going Deeper into Neural Networks”. Google Research.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

[2] 当前最为成功的艺术风格迁移方案,Prisma ★★★ ★★

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. “A neural algorithm of artistic style.” arXiv preprint arXiv:1508.06576 (2015).

http://arxiv.org/pdf/1508.06576

[3] iGAN ★★★ ★

Zhu, Jun-Yan, et al. “Generative Visual Manipulation on the Natural Image Manifold.” European Conference on Computer Vision. Springer International Publishing, 2016.

https://arxiv.org/pdf/1609.03552

[4] Neural Doodle ★★★ ★

Champandard, Alex J. “Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks.” arXiv preprint arXiv:1603.01768 (2016).

http://arxiv.org/pdf/1603.01768

[5] ★★★ ★

Zhang, Richard, Phillip Isola, and Alexei A. Efros. “Colorful Image Colorization.” arXiv preprint arXiv:1603.08511 (2016).

http://arxiv.org/pdf/1603.08511

[6] 超分辨率,李飞飞 ★★★ ★

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-time style transfer and super-resolution.” arXiv preprint arXiv:1603.08155 (2016).

https://arxiv.org/pdf/1603.08155.pdf

[7] ★★★ ★

Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. “A learned representation for artistic style.” arXiv preprint arXiv:1610.07629 (2016).

https://arxiv.org/pdf/1610.07629v1.pdf

[8] 基于空间位置、色彩信息与空间尺度的风格迁移 ★★★ ★

Gatys, Leon and Ecker, et al.”Controlling Perceptual Factors in Neural Style Transfer.” arXiv preprint arXiv:1611.07865 (2016).

https://arxiv.org/pdf/1611.07865.pdf

[9] 纹理生成与风格迁移 ★★★ ★

Ulyanov, Dmitry and Lebedev, Vadim, et al. “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images.” arXiv preprint arXiv:1603.03417(2016).

http://arxiv.org/abs/1603.03417

3.8 目标分割

[1] ★★★ ★★

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation.” in CVPR, 2015.

https://arxiv.org/pdf/1411.4038v2.pdf

[2] ★★★ ★★

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. “Semantic image segmentation with deep convolutional nets and fully connected crfs.” In ICLR, 2015.

https://arxiv.org/pdf/1606.00915v1.pdf

[3] ★★★ ★

Pinheiro, P.O., Collobert, R., Dollar, P. “Learning to segment object candidates.” In: NIPS. 2015.

https://arxiv.org/pdf/1506.06204v2.pdf

[4] ★★★

Dai, J., He, K., Sun, J. “Instance-aware semantic segmentation via multi-task network cascades.” in CVPR. 2016

https://arxiv.org/pdf/1512.04412v1.pdf

[5] ★★★

Dai, J., He, K., Sun, J. “Instance-sensitive Fully Convolutional Networks.” arXiv preprint arXiv:1603.08678 (2016).

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年07月29日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【干货】初学者的深度学习论文打怪升级指南
,【导读】人工智能研究专家Flood Sung针对近几年深度学习的研究进展提供了一个非常详细的阅读清单。如果你在深度学习领域是一个新手,你可以会想知道如何从哪篇论文开始阅读学习,人工智能研究专家Flood Sung制定了这一份详细的paper list,包括深度学习历史和基础知识、深度学习方法(涉及模型、优化、无监督学习、RNN、深度强化学习等)、深度学习应用(自然语言处理、目标检测、视觉跟踪、图像描述生成、机器翻译、机器人、目标分割等),建议你收藏,仔细学习。 Github 地址: https://git
WZEARW
2018/04/11
7770
【干货】初学者的深度学习论文打怪升级指南
126篇殿堂级深度学习论文分类整理 从入门到应用(上)
█ 如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步。而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?” 本文将试图解决这个问题——文章标题本来是:“从入门到绝望,无止境的深度学习论文”。请诸位备好道具,开启头悬梁锥刺股的学霸姿势。 开个玩笑。 但对非科班出身的开发者而言,读论文的确可以成为一件很痛苦的事。但好消息来了——为避免初学者陷入迷途苦海,昵称为 songrotek 的学霸在 GitHub 发布了他整理的深度学习路线图,分门别类梳理了新入门者最
AI研习社
2018/03/29
7600
机器学习必读TOP 100论文清单:高引用、分类全、覆盖面广丨GitHub 21.4k星
自2017年以来,超越SOTA的方法天天有,但往往针对性非常强,不一定是颠覆机器学习圈的重要成果。
量子位
2020/07/21
3810
机器学习与深度学习经典论文整理
这篇文章整理出了机器学习、深度学习领域的经典论文。为了减轻大家的阅读负担,只列出了最经典的一批,如有需要,可以自己根据实际情况补充。
SIGAI学习与实践平台
2018/12/17
1.3K0
【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等
【新智元导读】自然语言处理领域正在从统计学方法转向神经网络方法。在自然语言中,仍然存在许多具有挑战性的问题。但是,深度学习方法在某些特定的语言问题上取得了state-of-the-art的结果。这篇文章将介绍深度学习方法正在取得进展的7类自然语言处理任务。 自然语言处理领域正在从统计学方法转向神经网络方法。在自然语言中,仍然存在许多具有挑战性的问题。但是,深度学习方法在某些特定的语言问题上取得了state-of-the-art的结果。不仅仅是在一些benchmark问题上深度学习模型取得的表现,这是最有趣的
新智元
2018/03/22
8060
51 个深度学习目标检测模型汇总,论文、源码一应俱全!
目标检测(Object Detection)是深度学习 CV 领域的一个核心研究领域和重要分支。纵观 2013 年到 2019 年,从最早的 R-CNN、Fast R-CNN 到后来的 YOLO v2、YOLO v3 再到今年的 M2Det,新模型层出不穷,性能也越来越好!本文将会对目标检测近几年的发展和相关论文做出一份系统介绍,总结一份超全的文献 paper 列表。
OpenCV学堂
2019/10/11
1.4K0
51 个深度学习目标检测模型汇总,论文、源码一应俱全!
【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等
摘要: 本文讲的是用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等,自然语言处理领域正在从统计学方法转向神经网络方法。在自然语言中,仍然存在许多具有挑战性的问题。但是,深度学习方
小莹莹
2018/04/24
8490
【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等
全球最全计算机视觉资料(5:图像和视频标注)
目标检测和深度学习 Image Captioning m-RNN模型《 Explain Images with Multimodal Recurrent Neural Networks》 2014 [https://arxiv.org/pdf/1410.1090.pdf] NIC模型 《Show and Tell: A Neural Image Caption Generator》2014 MS Captivator From captions to visual concepts and back 2
朱晓霞
2018/07/20
5240
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第七篇专知主题荟萃-自动文摘Automatic Summarization知识资料大全集荟萃 (入门/进阶/论文/课程/会议/
WZEARW
2018/04/10
2.9K0
推荐|深度学习领域引用量最多的前20篇论文简介
深度学习是机器学习和统计学交叉领域的一个子集,在过去的几年里得到快速的发展。强大的开源工具以及大数据爆发使其取得令人惊讶的突破进展。本文根据微软学术(academic.microsoft.com)的引
朱晓霞
2018/04/18
7680
推荐|深度学习领域引用量最多的前20篇论文简介
【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)
【导读】当地时间 10月 22 日到10月29日,两年一度的计算机视觉国际顶级会议 International Conference on Computer Vision(ICCV 2017)在意大利威尼斯开幕。Google Brain 研究科学家 Ian Goodfellow 在会上作为主题为《生成对抗网络(Generative Adversarial Networks)》的Tutorial 最新演讲, 介绍了GAN的原理和最新的应用。昨天我们介绍了此内容,请查看 【干货】Google GAN之父Ian
WZEARW
2018/04/09
1.6K0
告别2019:属于深度学习的十年,那些我们必须知道的经典
在这十年中,伴随着计算能力和大数据方面的发展,深度学习已经攻克了许多曾经让我们感到棘手的问题,尤其是计算机视觉和自然语言处理方面。此外,深度学习技术也越来越多地走进我们的生活,变得无处不在。
机器之心
2020/02/10
6020
学界丨深度学习零基础进阶干货分享第三弹
雷锋网曾编译《干货分享 | 深度学习零基础进阶大法!》,相信读者一定对深度学习的历史有了一个基本了解,其基本的模型架构(CNN/RNN/LSTM)与深度学习如何应用在图片和语音识别上肯定也不在话下了。今天这一部分,我们将通过新一批论文,让你对深度学习的方式与深度学习在不同领域的运用有个清晰的了解。由于第二部分的论文开始向细化方向延展,因此你可以根据自己的研究方向酌情进行选择。雷锋网对每篇论文都增加了补充介绍,分上下两篇,由老吕IO及奕欣编译整理,未经雷锋网许可不得转载。 1. 循环神经网络/序列到序列模
AI科技评论
2018/03/08
1.1K0
学界丨深度学习零基础进阶干货分享第三弹
【专知荟萃11】GAN生成式对抗网络知识资料全集(理论/报告/教程/综述/代码等)
生成对抗网络(GAN)专知荟萃 一、理论学习 二、报告 三、教程 四、综述 五、中文博客资料 六、Github资源以及模型 七、最新研究论文 一、理论学习 训练GANs的技巧 参考链接:[http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans.pdf] Energy-Based GANs 以及Yann Le Cun 的相关研究 参考链接:[http://papers.nips.cc/paper/4824-imagenet
WZEARW
2018/04/10
1.1K0
学术丨深度学习零基础进阶第四弹​
AI 科技评论曾编译了《干货分享 | 深度学习零基础进阶大法!》系列,相信读者一定对深度学习的历史有了一个基本了解,其基本的模型架构(CNN/RNN/LSTM)与深度学习如何应用在图片和语音识别上肯定也不在话下了。今天这一部分,我们将通过新一批论文,让你对深度学习在不同领域的运用有个清晰的了解。由于第三部分的论文开始向细化方向延展,因此你可以根据自己的研究方向酌情进行选择。AI 科技评论对每篇论文都增加了补充介绍。这一弹主要从自然语言处理以及对象检测两方面的应用进行介绍。 本文编译于外媒 github,
AI科技评论
2018/03/09
7140
学术丨深度学习零基础进阶第四弹​
干货 | 分析梯度下降的轨迹,更好地理解深度学习中的优化问题
AI 科技评论按:神经网络的优化本质上是一个非凸问题,而简单的基于梯度的算法在实践中似乎总是能够解决这类问题。这种现象是深度学习的核心支柱之一,而目前有许多理论科学家家正试图解开这个谜:为什么基于梯度的方法能够在深度学习的优化中行之有效。
AI科技评论
2018/12/27
8660
干货 | 分析梯度下降的轨迹,更好地理解深度学习中的优化问题
干货分享 | 深度学习零基础进阶大法!
编者按:新手上路都会有一个疑问,如果自己没有相关基础,如何学习晦涩的专业知识?此前雷锋网编译了《从0到1:我是如何在一年内无师自通机器学习的?》,这篇文章讲述了 Per Harald Borgen 的自学历程。而关于深度学习,GitHub的 songrotek 同样有话要说。原文名为《Deep Learning Papers Reading Roadmap》,雷锋网奕欣及老吕IO整理编译,未经许可不得转载。 0. 深度学习的“圣经” 提到入门级的书,就不得不提这一本 Bengio Yoshua,Ian J.
AI科技评论
2018/03/08
8700
【专知荟萃10】推荐系统RS知识资料全集(入门/进阶/论文/综述/视频/代码等)
信息推荐 (推荐系统,Recommendation System) 荟萃 入门学习 进阶文章 综述 Tutorial 视频教程 代码 领域专家 入门学习 探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探 IBM developerWorks [https://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/index.html\] 探索推荐引擎内部的秘密,第 2 部分 深入推荐引擎相关算法 - 协同过滤 [https://www.i
WZEARW
2018/04/10
1.5K0
一文尽览推荐系统模型演变史
4. 整理此文的目的是给大家一个清晰的脉络,可当作一篇小小综述。从信息过载概念的提出到推荐系统的起源,从前深度学习时代的推荐系统到劲头正热的深度推荐系统,再到最后对于深度学习技术带来的推荐系统性能提升的质疑,每个阶段都是必不可少的。
张小磊
2020/06/29
3.4K0
一文尽览推荐系统模型演变史
计算机视觉经典论文荟萃,深度学习方法占领9大方向,建议收藏
【导读】近日,大连理工大学的学生ArcherFMY针对近几年深度学习在计算机视觉领域的应用提供了一个非常详细的阅读清单。如果你在深度学习领域是一个新手,你可以会想知道如何从哪篇论文开始阅读学习,如果你是从事计算机视觉领域,这一份详细的paper list,包括显著目标检测、视觉目标跟踪、目标检测、目标定位、语义分割和场景解析、边缘检测、姿态估计、超分辨率、图像分类,建议你收藏,仔细学习。本文转载已得到作者授权。 Github 地址: https://github.com/ArcherFMY/Paper_Re
WZEARW
2018/04/12
2.1K0
计算机视觉经典论文荟萃,深度学习方法占领9大方向,建议收藏
推荐阅读
【干货】初学者的深度学习论文打怪升级指南
7770
126篇殿堂级深度学习论文分类整理 从入门到应用(上)
7600
机器学习必读TOP 100论文清单:高引用、分类全、覆盖面广丨GitHub 21.4k星
3810
机器学习与深度学习经典论文整理
1.3K0
【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等
8060
51 个深度学习目标检测模型汇总,论文、源码一应俱全!
1.4K0
【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等
8490
全球最全计算机视觉资料(5:图像和视频标注)
5240
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
2.9K0
推荐|深度学习领域引用量最多的前20篇论文简介
7680
【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)
1.6K0
告别2019:属于深度学习的十年,那些我们必须知道的经典
6020
学界丨深度学习零基础进阶干货分享第三弹
1.1K0
【专知荟萃11】GAN生成式对抗网络知识资料全集(理论/报告/教程/综述/代码等)
1.1K0
学术丨深度学习零基础进阶第四弹​
7140
干货 | 分析梯度下降的轨迹,更好地理解深度学习中的优化问题
8660
干货分享 | 深度学习零基础进阶大法!
8700
【专知荟萃10】推荐系统RS知识资料全集(入门/进阶/论文/综述/视频/代码等)
1.5K0
一文尽览推荐系统模型演变史
3.4K0
计算机视觉经典论文荟萃,深度学习方法占领9大方向,建议收藏
2.1K0
相关推荐
【干货】初学者的深度学习论文打怪升级指南
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文