import pandas as pd
import numpy as np
pd.set_option('display.width',1000)
url = 'https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/04_Apply/US_Crime_Rates/US_Crime_Rates_1960_2014.csv'
crime = pd.read_csv(url)
查看每个数据列的数据类型
print(crime.info())
将Year的数据类型转换为datatime64
crime.Year = pd.to_datetime(crime.Year,format='%Y')
print(crime.info())
将Year设置为数据框的索引
crime = crime.set_index('Year',drop= False)
print(crime.head())
删除名为Total的列
del crime['Total']
print(crime)
按照Year对数据框进行分组并求和
crimes = crime.resample('10AS').sum()
population = crime['Population'].resample('10AS').max()
crime['Population'] = population
print(crimes)
何时时美国历史上生存最危险的年代
print(crimes.idxmax(0))
本文由 所长 创作,采用 知识共享署名4.0 国际许可协议进行许可 本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名 最后编辑时间为: Apr 23, 2018 at 07:31 am