前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >理解图优化,一步步带你看懂g2o代码

理解图优化,一步步带你看懂g2o代码

作者头像
小白学视觉
发布2019-05-30 19:46:23
3.7K1
发布2019-05-30 19:46:23
举报
文章被收录于专栏:深度学习和计算机视觉

图优化有什么优势?

师兄:按照惯例,我还是先说说图优化的背景吧。SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。不过,目前SLAM研究的主流热点几乎都是基于图优化的。

小白:据我所知,滤波方法很早就有了,前人的研究也很深。为什么现在图优化变成了主流了?

师兄:你说的没错。滤波方法尤其是EKF方法,在SLAM发展很长的一段历史中一直占据主导地位,早期的大神们研究了各种各样的滤波器来改善滤波效果,那会入门SLAM,EKF是必须要掌握的。顺便总结下滤波方法的优缺点:

优点:在当时计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。

缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。而现在基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低。

小白:原来如此。那图优化在视觉SLAM中效率很高吗?

师兄:这个其实说来话长了。很久很久以前,其实就是不到十年前吧(感觉好像很久),大家还都是用滤波方法,因为在图优化里,Bundle Adjustment(后面简称BA)起到了核心作用。但是那会SLAM的研究者们发现包含大量特征点和相机位姿的BA计算量其实很大,根本没办法实时。

小白:啊?后来发生了什么?(认真听故事ing)

师兄:后来SLAM研究者们发现了其实在视觉SLAM中,虽然包含大量特征点和相机位姿,但其实BA是稀疏的,稀疏的就好办了,就可以加速了啊!比较代表性的就是2009年,几个大神发表了自己的研究成果《SBA:A software package for generic sparse bundle adjustment》,而且计算机硬件发展也很快,因此基于图优化的视觉SLAM也可以实时了!

小白:厉害厉害!向大牛们致敬!

图优化是什么?

小白:图优化既然是主流,那我可以跳过滤波方法直接学习图优化吧,反正滤波方法也看不懂。。

师兄:额,图优化确实是主流,以后有需要你可以再去看滤波方法,那我们今天就只讲图优化好啦

小白:好滴,那问题来了,究竟什么是图优化啊?

师兄:图优化里的图就是数据结构里的图,一个图由若干个顶点(vertex),以及连接这些顶点的边(edge)组成,给你举个例子

比如一个机器人在房屋里移动,它在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边,边通常表示误差项。

在SLAM里,图优化一般分解为两个任务:

1、构建图。机器人位姿作为顶点,位姿间关系作为边。

2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。

下面就是一个直观的例子。我们根据机器人位姿来作为图的顶点,这个位姿可以来自机器人的编码器,也可以是ICP匹配得到的,图的边就是位姿之间的关系。由于误差的存在,实际上机器人建立的地图是不准的,如下图左。我们通过设置边的约束,使得图优化向着满足边约束的方向优化,最后得到了一个优化后的地图(如下图中所示),它和真正的地图(下图右)非常接近。

小白:哇塞,这个图优化效果这么明显啊!刚开始误差那么大,最后都校正过来了

师兄:是啊,所以图优化在SLAM中举足轻重啊,一定得掌握!

小白:好,有学习的动力了!我们开启编程模式吧!

先了解g2o 框架

师兄:前面我们简单介绍了图优化,你也看到了它的神通广大,那如何编程实现呢?

小白:对啊,有没有现成的库啊,我还只是个“调包侠”。。

师兄:这个必须有啊!在SLAM领域,基于图优化的一个用的非常广泛的库就是g2o,它是General Graphic Optimization 的简称,是一个用来优化非线性误差函数的c++框架。这个库可以满足你调包侠的梦想~

小白:哈哈,太好了,否则打死我也写不出来啊!那这个g2o怎么用呢?

师兄:我先说安装吧,其实g2o安装很简单,参考GitHub上官网:

https://github.com/RainerKuemmerle/g2o

按照步骤来安装就行了。需要注意的是安装之前确保电脑上已经安装好了第三方依赖。

小白:好的,这个看起来很好装。不过问题是,我看相关的代码,感觉很复杂啊,不知如何下手啊

师兄:别急,第一次接触g2o,确实有这种感觉,而且官网文档写的也比较“不通俗不易懂”,不过如果你能捋顺了它的框架,再去看代码,应该很快能够入手了

小白:是的,先对框架了然于胸才行,不然即使能凑合看懂别人代码,自己也不会写啊!

师兄:嗯嗯,其实g2o帮助我们实现了很多内部的算法,只是在进行构造的时候,需要遵循一些规则,在我看来这是可以接受的,毕竟一个程序不可能满足所有的要求,因此在以后g2o的使用中还是应该多看多记,这样才能更好的使用这个库。

小白:记住了。养成记笔记的好习惯,还要多练习。

师兄:好,那我们首先看一下下面这个图,是g2o的基本框架结构。如果你查资料的话,你会在很多地方都能看到。看图的时候要注意箭头类型

1、图的核心

小白:师兄,这个图该从哪里开始看?感觉好多东西。。

师兄:如果你想要知道这个图中哪个最重要,就去看看箭头源头在哪里

小白:我看看。。。好像是最左侧的SparseOptimizer?

师兄:对的,SparseOptimizer是整个图的核心,我们注意右上角的 is-a 实心箭头,这个SparseOptimizer它是一个Optimizable Graph,从而也是一个超图(HyperGraph)。

小白:我去,师兄,怎么突然冒出来这么多奇怪的术语,都啥意思啊?

师兄:这个你不需要一个个弄懂,不然可能黄花菜都凉了。你先暂时只需要了解一下它们的名字,有些以后用不到,有些以后用到了再回看。目前如果遇到重要的我会具体解释。

小白:好。那下一步看哪里?

2、顶点和边

师兄:我们先来看上面的结构吧。注意看 has-many 箭头,你看这个超图包含了许多顶点(HyperGraph::Vertex)和边(HyperGraph::Edge)。而这些顶点顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge

小白:头有点晕了,师兄

师兄:哈哈,不用一个个记,现阶段了解这些就行。顶点和边在编程中很重要的,关于顶点和边的定义我们以后会详细说的。下面我们来看底部的结构。

小白:嗯嗯,知道啦!

3、配置SparseOptimizer的优化算法和求解器

师兄:你看下面,整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell's dogleg 三者中间选择一个(我们常用的是GN和LM)

4、如何求解

师兄:那么如何求解呢?OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,具体定义后面会介绍

到此,就是上面图的一个简单理解。

一步步带你看懂g2o编程流程

小白:师兄,看完了我也不知道编程时具体怎么编呢!

师兄:我正好要说这个。首先这里需要说一下,我们梳理是从顶层到底层,但是编程实现时需要反过来,像建房子一样,从底层开始搭建框架一直到顶层。g2o的整个框架就是按照下图中我标的这个顺序来写的。

高博在十四讲中g2o求解曲线参数的例子来说明,源代码地址

https://github.com/gaoxiang12/slambook/edit/master/ch6/g2o_curve_fitting/main.cpp

为了方便理解,我重新加了注释。如下所示,

代码语言:javascript
复制
typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1

// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); 

// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );      

// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );

// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer;     // 图模型
optimizer.setAlgorithm( solver );   // 设置求解器
optimizer.setVerbose( true );       // 打开调试输出

// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ )    // 往图中增加边
{
  CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
  edge->setId(i);
  edge->setVertex( 0, v );                // 设置连接的顶点
  edge->setMeasurement( y_data[i] );      // 观测数值
  edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
  optimizer.addEdge( edge );
}

// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);

结合上面的流程图和代码。下面一步步解释具体步骤。

1、创建一个线性求解器LinearSolver

我们要求的增量方程的形式是:H△X=-b,通常情况下想到的方法就是直接求逆,也就是△X=-H.inv*b。看起来好像很简单,但这有个前提,就是H的维度较小,此时只需要矩阵的求逆就能解决问题。但是当H的维度较大时,矩阵求逆变得很困难,求解问题也变得很复杂。

小白:那有什么办法吗?

师兄:办法肯定是有的。此时我们就需要一些特殊的方法对矩阵进行求逆,你看下图是GitHub上g2o相关部分的代码

如果你点进去看,可以分别查看每个方法的解释,如果不想挨个点进去看,看看下面我的总结就行了

代码语言:javascript
复制
LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver
2、创建BlockSolver。并用上面定义的线性求解器初始化。

BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。它的定义在如下文件夹内:

g2o/g2o/core/block_solver.h

你点进去会发现 BlockSolver有两种定义方式

一种是指定的固定变量的solver,我们来看一下定义

代码语言:javascript
复制
 using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;

其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度

另一种是可变尺寸的solver,定义如下

代码语言:javascript
复制
using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;

小白:为何会有可变尺寸的solver呢?

师兄:这是因为在某些应用场景,我们的Pose和Landmark在程序开始时并不能确定,那么此时这个块状求解器就没办法固定变量,此时使用这个可变尺寸的solver,所有的参数都在中间过程中被确定

另外你看block_solver.h的最后,预定义了比较常用的几种类型,如下所示:

代码语言:javascript
复制
BlockSolver_6_3 :表示pose 是6维,观测点是3维。用于3D SLAM中的BA
BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
BlockSolver_3_2:表示pose 是3维,观测点是2维

以后遇到了知道这些数字是什么意思就行了

3、创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化

我们来看g2o/g2o/core/ 目录下,发现Solver的优化方法有三种:分别是高斯牛顿(GaussNewton)法,LM(Levenberg–Marquardt)法、Dogleg法,如下图所示,也和前面的图相匹配

小白:师兄,上图最后那个OptimizationAlgorithmWithHessian 是干嘛的?

师兄:你点进去 GN、 LM、 Doglet算法内部,会发现他们都继承自同一个类:OptimizationWithHessian,如下图所示,这也和我们最前面那个图是相符的

然后,我们点进去看 OptimizationAlgorithmWithHessian,发现它又继承自OptimizationAlgorithm,这也和前面的相符

总之,在该阶段,我们可以选则三种方法:

代码语言:javascript
复制
g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg 
g2o::OptimizationAlgorithmDogleg 
4、创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。

创建稀疏优化器

代码语言:javascript
复制
g2o::SparseOptimizer    optimizer;

用前面定义好的求解器作为求解方法:

代码语言:javascript
复制
SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)

其中setVerbose是设置优化过程输出信息用的

代码语言:javascript
复制
SparseOptimizer::setVerbose(bool verbose)

不信我们来看一下它的定义

5、定义图的顶点和边。并添加到SparseOptimizer中。

这部分比较复杂,小白会更新两个关于这部分的文章哦,敬请期待呦。

6、设置优化参数,开始执行优化。

设置SparseOptimizer的初始化、迭代次数、保存结果等。

初始化

代码语言:javascript
复制
SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)

设置迭代次数,然后就开始执行图优化了。

代码语言:javascript
复制
SparseOptimizer::optimize(int iterations, bool online)

小白:终于搞明白g2o流程了!谢谢师兄!必须给你个「好看」啊!

注:以上内容部分参考了如下文章,感谢原作者:

https://www.jianshu.com/p/e16ffb5b265d

https://blog.csdn.net/heyijia0327/article/details/47686523

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-03-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 图优化是什么?
  • 先了解g2o 框架
    • 1、图的核心
      • 2、顶点和边
        • 3、配置SparseOptimizer的优化算法和求解器
          • 4、如何求解
          • 一步步带你看懂g2o编程流程
            • 1、创建一个线性求解器LinearSolver
              • 2、创建BlockSolver。并用上面定义的线性求解器初始化。
                • 3、创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
                  • 4、创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。
                    • 5、定义图的顶点和边。并添加到SparseOptimizer中。
                      • 6、设置优化参数,开始执行优化。
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档