Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >从Bert预训练数据集中获取词向量

从Bert预训练数据集中获取词向量

作者头像
sparkexpert
发布于 2019-08-23 09:45:26
发布于 2019-08-23 09:45:26
4.5K0
举报

在一些操作过程中,经常要获取词向量,BERT做为一个在各项评测指标中都比较出色的,且提供了许多预训练模型的,从其中获取词向量是一些任务中必备的操作。

现将其获取过程界面截图如下:

(代码可见图中操作)

下面这个图,可以按照指定的词汇进行获取其词向量。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019年08月14日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
快速使用 BERT 生成词向量:bert-as-service
BERT 模型是一种 NLP 预训练技术,本文不介绍 BERT 的原理,主要关注如何快速上手使用 BERT 模型生成词向量用于下游任务。
全栈程序员站长
2022/09/05
3K1
图解BERT模型:从零开始构建BERT
本文首先介绍BERT模型要做什么,即:模型的输入、输出分别是什么,以及模型的预训练任务是什么;然后,分析模型的内部结构,图解如何将模型的输入一步步地转化为模型输出;最后,我们在多个中/英文、不同规模的数据集上比较了BERT模型与现有方法的文本分类效果。 1. 模型的输入/输出 BERT模型的全称是:BidirectionalEncoder Representations from Transformer。从名字中可以看出,BERT模型的目标是利用大规模无标注语料训练、获得文本的包含丰富语义信息的Repre
腾讯Bugly
2019/01/30
47.1K3
图解BERT模型:从零开始构建BERT
大语言模型的预训练[1]:基本概念原理、神经网络的语言模型、Transformer模型原理详解、Bert模型原理介绍
预训练属于迁移学习的范畴。现有的神经网络在进行训练时,一般基于反向传播(Back Propagation,BP)算法,先对网络中的参数进行随机初始化,再利用随机梯度下降(Stochastic Gradient Descent,SGD)等优化算法不断优化模型参数。而预训练的思想是,模型参数不再是随机初始化的,而是通过一些任务进行预先训练,得到一套模型参数,然后用这套参数对模型进行初始化,再进行训练。
汀丶人工智能
2023/07/17
6.6K0
大语言模型的预训练[1]:基本概念原理、神经网络的语言模型、Transformer模型原理详解、Bert模型原理介绍
获得Bert预训练好的中文词向量
可以看出分词并不会对句子的向量产生影响。 参考文章: 1.https://blog.csdn.net/zhonglongshen/article/details/88125958 2.https://www.colabug.com/5332506.html
全栈程序员站长
2022/08/26
7760
获得Bert预训练好的中文词向量
资源 | Chinese Word Vectors:目前最全的中文预训练词向量集合
作者:shenshen-hungry 机器之心编译 参与:刘晓坤、思源 对于国内自然语言处理的研究者而言,中文词向量语料库是需求很大的资源。近日,北京师范大学等机构的研究者开源了「中文词向量语料库」,试图为大家解决这一问题,该库包含经过数十种用各领域语料(百度百科、维基百科、人民日报 1947-2017、知乎、微博、文学、金融、古汉语等)训练的词向量,涵盖各领域,且包含多种训练设置。目前,该研究的论文《Analogical Reasoning on Chinese Morphological and Se
机器之心
2018/06/11
2.3K0
词向量发展历程:技术及实战案例
词向量(Word Vector)或词嵌入(Word Embedding)是自然语言处理(NLP)中的一项基础技术,它允许我们将自然语言中的词汇表示为实数向量。这些向量通常存在于一个高维空间内,其中每一个维度都可能代表着某种语义属性。通过这种转换,机器学习模型可以捕捉到词语之间复杂的关系,如语义相似性、反义、上下位关系等。
TechLead
2024/04/17
2K0
词向量发展历程:技术及实战案例
词向量技术 | 从word2vec到ELMo
"词和句子的嵌入已成为所有基于深度学习的自然语言处理(NLP)系统的重要组成部分,它们在固定长度的稠密向量中编码单词和句子,以大幅度提高神经网络处理文本数据的能力。"
用户1332428
2018/08/17
2.6K0
词向量技术 | 从word2vec到ELMo
一文详尽之Embedding(向量表示)!
文本是一类非常重要的非结构化数据,如何表示文本数据一直是机器学习领域的一个重点研究方向。文本向量就是深度学习时代产生的一种文本表示的方法。
Datawhale
2025/01/19
3.7K0
一文详尽之Embedding(向量表示)!
NLP中的词向量对比:word2vec/glove/fastText/elmo/GPT/bert
一、文本表示和各词向量间的对比 1、文本表示哪些方法? 2、怎么从语言模型理解词向量?怎么理解分布式假设? 3、传统的词向量有什么问题?怎么解决?各种词向量的特点是什么? 4、word2vec和NNLM对比有什么区别?(word2vec vs NNLM) 5、word2vec和fastText对比有什么区别?(word2vec vs fastText) 6、glove和word2vec、 LSA对比有什么区别?(word2vec vs glove vs LSA) 7、 elmo、GPT、bert三者之间有什么区别?(elmo vs GPT vs bert)
zenRRan
2019/06/14
3.8K0
NLP中的词向量对比:word2vec/glove/fastText/elmo/GPT/bert
算法金 | 没有思考过 Embedding,不足以谈 AI
在当今的人工智能(AI)领域,Embedding 是一个不可或缺的概念。如果你没有深入理解过 Embedding,那么就无法真正掌握 AI 的精髓。接下来,我们将深入探讨 Embedding 的基本概念。
算法金
2024/06/27
6960
算法金 | 没有思考过 Embedding,不足以谈 AI
词向量(2)--从ELMo到Bert
其实,本文到这里,"核心内容"就已经讲完啦...当然如果你还不困的话,可以继续往下看,应该会有助于睡眠的
流川枫
2020/04/24
1.5K0
【CS224N课程笔记】词向量II: GloVe, 评估和训练
课程主页: http://web.stanford.edu/class/cs224n/
NewBeeNLP
2021/01/12
7540
【CS224N课程笔记】词向量II: GloVe, 评估和训练
fasttext工具介绍及迁移学习概念(包含训练词向量)
用户10950404
2024/08/06
2750
NLP教程(2) | GloVe及词向量的训练与评估
教程地址:http://www.showmeai.tech/tutorials/36
ShowMeAI
2022/05/01
1.1K0
NLP教程(2) | GloVe及词向量的训练与评估
BERT中的词向量指南,非常的全面,非常的干货[通俗易懂]
在本文中,我将深入研究谷歌的BERT生成的word embeddings,并向你展示如何通过BERT生成自己的word embeddings。
全栈程序员站长
2022/06/28
2.8K0
BERT中的词向量指南,非常的全面,非常的干货[通俗易懂]
机器学习|7种经典预训练模型原理解析
目前无论在CV领域还是NLP领域,预训练都是一个很普遍和普适的方法。我们都知道深度学习的模型越庞大,模型参数越多,为了避免过拟合就需要相应大规模的数据集,但对于很多任务而言,样本标注的成本昂贵。相反,大规模无标签数据库相对容易建立,为了充分利用这些无标记数据,我们可以先使用它们在其他一些任务上学习一个好的特征表示,再用于训练目标任务。
智能生信
2021/02/04
5.6K0
词向量算法「建议收藏」
https://www.cnblogs.com/the-wolf-sky/articles/10192363.html
全栈程序员站长
2022/06/30
9310
词向量算法「建议收藏」
词向量(1)--从Word2Vec到ELMo
若你是做NLP的,一定对词向量很亲切,若你是做推荐的,对词向量也一定不会陌生,以词向量为代表的序列向量化方法已经成为机器学习中必不可少的实战利器。
流川枫
2020/04/24
9410
什么是词向量?如何得到词向量?Embedding 快速解读
我第一次接触 Embedding 是在 Word2Vec 时期,那时候还没有 Transformer 和 BERT 。Embedding 给我的印象是,可以将词映射成一个数值向量,而且语义相近的词,在向量空间上具有相似的位置。
PP鲁
2022/09/20
2.4K0
什么是词向量?如何得到词向量?Embedding 快速解读
深度 | 通过NMT训练的通用语境词向量:NLP中的预训练模型?
选自 einstein.ai 机器之心编译 参与:Nurhachu Null、蒋思源 自然语言处理(NLP)这个领域目前并没有找到合适的初始化方法,它不能像计算机视觉那样可以使用预训练模型获得图像的基本信息,我们在自然语言处理领域更常用的还是随机初始化词向量。本文希望通过 MT-LSTM 先学习一个词向量,该词向量可以表征词汇的基本信息,然后再利用该词向量辅助其它自然语言处理任务以提升性能。本文先描述了如何训练一个带注意力机制的神经机器翻译,其次描述了如何抽取该模型的通用词向量与将其应用于其它任务的性能。
机器之心
2018/05/09
1.4K0
深度 | 通过NMT训练的通用语境词向量:NLP中的预训练模型?
推荐阅读
相关推荐
快速使用 BERT 生成词向量:bert-as-service
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档