前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CDA 试听课|什么是卷积神经网络运算?

CDA 试听课|什么是卷积神经网络运算?

作者头像
CDA数据分析师
发布2019-09-26 11:14:54
4880
发布2019-09-26 11:14:54
举报
文章被收录于专栏:CDA数据分析师

CDA 金牌讲师覃老师,带你5分钟了解什么是卷积神经网络运算?

请点击下方视频观看~

卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有局部连接、权重共享等特性的深层前馈神经网络。

卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:

(1)参数太多

如果输入图像大小为100 × 100 × 3(即图像高度为100,宽 度为100,3个颜色通道:RGB)。在全连接前馈网络中,第一个隐藏层的每个神经元到输入层都有100 × 100 × 3 = 30, 000个相互独立的连接,每个连接都对应一个权重参数。随着隐藏层神经元数量的增多,参数的规模也会急剧增加。这 会导致整个神经网络的训练效率会非常低,也很容易出现过拟合。

(2)局部不变性特征

自然图像中的物体都具有局部不变性特征,比如在尺度缩放、平移、旋转等操作不影响其语义信息。而全连接前馈网络很难提取这些局部不变特征,一般需要进行数据增强来提高性能。

卷积神经网络是受生物学上感受野的机制而提出。感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即神经元只接受其所支 配的刺激区域内的信号。在视觉神经系统中,视觉皮层中的神经细胞的输出依 赖于视网膜上的光感受器。视网膜上的光感受器受刺激兴奋时,将神经冲动信 号传到视觉皮层,但不是所有视觉皮层中的神经元都会接受这些信号。一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的 前馈神经网络,使用反向传播算法进行训练。卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚。这些特性使得卷积神经网络具有一定程度上的平移、缩放和旋转不变性。和前馈神经网络相比,卷积神经网络的参数更少。

卷积神经网络主要使用在图像和视频分析的各种任务上,比如图像分类、人脸识别、物体识别、图像分割等,其准确率一般也远远超出了其它的神经网络模型。近年来卷积神经网络也广泛地应用到自然语言处理、推荐系统等领域。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CDA数据分析师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人脸识别
腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档