首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >点云采样

点云采样

作者头像
NT4.4
修改于 2019-10-16 10:45:11
修改于 2019-10-16 10:45:11
2K0
举报
文章被收录于专栏:图形视觉图形视觉

原文链接

点云采样分类

点云采样的方法有很多种,常见的有均匀采样,几何采样,随机采样,格点采样等。下面介绍一些常见的采样方法。


格点采样

格点采样,就是把三维空间用格点离散化,然后在每个格点里采样一个点。具体方法如下:

1. 创建格点:如中间图所示,计算点云的包围盒,然后把包围盒离散成小格子。格子的长宽高可以用户设定,也可以通过设定包围盒三个方向的格点数来求得。

2. 每个小格子包含了若干个点,取离格子中心点最近的点为采样点,如右图所示。

格点采样的特点:

  • 效率非常高
  • 采样点分布比较均匀,但是均匀性没有均价采样高
  • 可以通过格点的尺寸控制点间距
  • 不能精确控制采样点个数

均匀采样

均匀采样的方法有很多,并且有一定的方法来评估采样的均匀性。这里介绍一种简单的均匀采样方法,最远点采样。具体方法如下:

输入点云记为C,采样点集记为S,S初始化为空集。

1. 随机采样一个种子点Seed,放入S。如图1所示。

2. 每次采样一个点,放入S。采样的方法是,在集合C-S里,找一点距离集合S距离最远的点。其中点到集合的距离为,这点到集合里所有点距最小的距离。如图2-6所示,采样点S的数量分别为2,4,10,20,100.

最远点采样的特点:

  • 采样点分布均匀
  • 算法时间复杂度有些高,因为每次采样一个点,都要计算集合到集合之间的距离。可以采用分治的方法来提高效率。
  • 采样点一般先分布在边界附近,这个性质在有些地方是有用的,比如图元检测里面的点采样。

几何采样

几何采样,在点云曲率越大的地方,采样点个数越多。下面介绍一种简单的几何采样方法,具体方法如下:

输入是一个点云,目标采样数S,采样均匀性U

1. 点云曲率计算比较耗时,这里我们采用了一个简单方法,来近似达到曲率的效果:给每个点计算K邻域,然后计算点到邻域点的法线夹角值。曲率越大的地方,这个夹角值就越大。

2. 设置一个角度阈值,比如5度。点的邻域夹角值大于这个阈值的点,被放入几何特征区域G。这样点云就分成了两部分,几何特征区域G和其它区域。

3. 均匀采样几何特征区域G和其它区域,采样数分别为S * (1 - U),S * U。

下图是一个均匀采样和几何采样的比较图,这个采样方法的特点:

  • 几何特征越明显的区域,采样点个数分布越多
  • 计算效率高
  • 采样点局部分布是均匀的
  • 稳定性高:通过几何特征区域的划分,使得采样结果抗噪性更强
有兴趣的读者,可以参考文章的视频版本

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
关于使用深度学习进行三维点云几何压缩
近些年来,随着计算机软硬件等的不断发展,计算机视觉、现实增强等让那些我们觉得不会发生的事情发生了,不得不说,科技正在改变我们的生活,给我们的生活带来了更多的便利。
繁依Fanyi
2023/05/07
8180
关于使用深度学习进行三维点云几何压缩
自适应采样非局部神经网络的点云鲁棒操作
原始点云数据不可避免地从3D传感器或在重建算法中包含异常值。本文提出了一种用于鲁棒点云处理的新型端到端网络,称为 PointASNL,可以有效地处理带噪声的点云。我们方法中的关键部分是自适应采样(AS)模块。它首先从最远点采样点的周围对点的邻域加权,然后在整个点云中自适应的调整采样。AS模块不仅有益于点云的特征学习,而且缓解受异常值的影响。为了进一步捕捉邻域信息和长期依赖于采样点,我们从非局部操作的角度出发,提出了局部-非局部 (local-Nonlocal, L-NL) 模块。这种L-NL模块使学习过程对噪声不敏感。大量的实验证明了在分类和语义分割任务上,在合成数据,室内、室外数据,是否有噪声的数据,都有良好性能和鲁棒性。并且在有大量噪声的真实户外数据集SemanticKITTI上,明显优于以前的方法。代码发布在:
3D视觉工坊
2020/12/11
9970
自适应采样非局部神经网络的点云鲁棒操作
点云ICP注册
两个点云要注册在一块,一般分两个步骤:先做一个大致的对齐,也就是所谓的初始注册,一般可以通过一些可靠的点对来计算得到(如图3所示);然后在初始注册的基础上进行精细注册,提升注册的精度(如图4所示)。精细注册的方法,一般采用ICP算法,也就是最近点迭代的方法。
NT4.4
2019/10/17
2.9K0
点云ICP注册
3D点云 | 基于深度学习处理点云数据入门经典:PointNet、PointNet++
不同于图像数据在计算机中的表示通常编码了像素点之间的空间关系,点云数据由无序的数据点构成一个集合来表示。因此,在使用图像识别任务的深度学习模型处理点云数据之前,需要对点云数据进行一些处理。目前采用的方式主要有两种:
AI算法修炼营
2020/06/09
10.2K0
点云处理不得劲?球卷积了解一下
点云,是一种重要的三维数据形式,对于自动驾驶、VR/AR测量领域都有着十分重要的作用。
代码医生工作室
2019/10/28
9260
点云处理不得劲?球卷积了解一下
VSLAM系列原创03讲 | 为什么需要ORB特征点均匀化?
https://github.com/electech6/ORB_SLAM2_detailed_comments
用户1150922
2021/12/07
8070
点云处理算法整理(超详细教程)
https://www.cnblogs.com/armysheng/p/3422923.html
全栈程序员站长
2021/04/07
5.6K0
点云法线
对于一个三维空间的正则曲面R(u, v), 点(u, v)处的切平面(Ru, Rv)的法向量即为曲面在点(u, v)的法向量。点云是曲面的一个点采样,采样曲面的法向量就是点云的法向量。
NT4.4
2019/10/17
2.6K0
点云法线
SDMNet:大规模激光雷达点云配准的稀疏到稠密匹配网络
自动驾驶车辆需要准确地感知和理解周围环境,相比于二维的视觉感知,三维视觉感知提供了更多的信息和更准确的空间建模能力。而点云配准是三维视觉感知中的一项基本问题,在自动驾驶中的地图、定位等方面有着重要作用。基于特征匹配的配准算法是点云配准领域的核心框架之一,其主要基于特征相似度求解匹配点对,并结合鲁棒匹配算法得到最终的配准结果,该框架更能够适应自动驾驶场景,但大规模且复杂的点云场景也对点云配准算法的效率和准确性提出了更高的要求。
一点人工一点智能
2023/05/27
1.3K0
SDMNet:大规模激光雷达点云配准的稀疏到稠密匹配网络
P2C-自监督点云补全,只需用单一部分点云
点云补全是指根据部分点云恢复完整的点云形状。现有方法需要完整的点云或同一对象的多个部分点云来进行训练。与以前的方法形成对比,本论文提出的Partial2Complete (P2C)第一个仅需要每个对象的单个不完整点云就可以进行自监督学习的框架。具体而言,我们的框架将不完整点云分组为局部点云块作为输入,预测被遮挡的点云块,通过观察不同的局部对象学习先验信息。我们还提出了区域敏感Chamfer距离以正则化形状误匹配,不限制补全能力,并设计了法线一致性约束,鼓励恢复的形状表面连续完整。这样,P2C不再需要完整形状作为监督,而是从类别特定数据集中学习结构线索,补全部分点云。我们在人工ShapeNet数据和真实ScanNet数据上证明了我们方法的有效性,结果显示P2C产生了与完整形状训练方法可媲美的结果,并优于多视角训练的方法。
BBuf
2023/08/25
1.1K0
P2C-自监督点云补全,只需用单一部分点云
2017-NIPS-PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space
这篇文章[1]是 PointNet 的改进版。PointNet 是直接将神经网络用于点云数据处理的先锋,虽然 PointNet 在 3D 任务上取得不错的效果,但其还是存在不足。PointNet 忽略了点云数据间的空间局部结构,从而不能很好地识别更细粒度的模型,也不能很好地泛化到复杂的场景。PointNet++ 则针对这个问题,在 PointNet 基础上引入了层级式的嵌套结构来捕获局部特征。此外,真实的点云数据采集往往是不均匀的(因为采样时是从传感器点状发出信号的,自然离传感器近的采样密度高,远的密度低),而这会导致在均匀采样的点云数据集下训练的模型性能产生明显下降。作者在 PointNet++ 中提出了一种新的针对集合数据的学习层,其可以自适应地结合不同尺度下学习到的特征。广泛的实验数据显示 PointNet++ 可以有效且鲁棒地学习到深层的点云数据集合特征,在 3D 点云任务上达到了超越已有的 SOTA 性能。
hotarugali
2022/05/31
1.1K0
2017-NIPS-PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space
激光点云语义分割深度神经网络
由于增强现实/虚拟现实的发展及其在计算机视觉、自动驾驶和机器人领域的广泛应用,点云学习最近备受关注。深度学习已成功地用于解决二维视觉问题,然而在点云上使用深度学习技术还处于起步阶段。语义分割的目标是将给定的点云根据点的语义含义分成几个子集。本文重点研究基于点的方法这一技术路线中最先进的语义分割技术。
用户5687508
2021/07/01
1.3K0
基于三维点云的卷积运算综述
3D传感器(如激光雷达和深度相机)的普及引起了人们对3D视觉的广泛关注,这些传感器采集的3D数据可以提供丰富的几何结构和尺度细节,这也在许多领域得到了实际应用,包括自动驾驶技术[1]、机器人控制技术[2]等。
一点人工一点智能
2024/01/09
8821
基于三维点云的卷积运算综述
三万字收藏 | 三维场景点云理解与重建技术
作者:龚靖渝, 楼雨京, 柳奉奇, 张志伟, 陈豪明, 张志忠, 谭鑫, 谢源, 马利庄
一点人工一点智能
2023/08/24
1.8K0
三万字收藏 | 三维场景点云理解与重建技术
CVPR 2020 | RandLA-Net:大场景三维点云语义分割新框架(已开源)
本文要介绍的是 CVPR 2020上被录用的文章《RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds》
AI科技评论
2020/03/05
4.6K0
CVPR 2020 | RandLA-Net:大场景三维点云语义分割新框架(已开源)
CVPR 2023 点云系列 | Point-NN无需训练的非参数、即插即用网络
项目代码:https://github.com/ZrrSkywalker/Point-NN
AiCharm
2023/05/15
8050
CVPR 2023 点云系列 | Point-NN无需训练的非参数、即插即用网络
【PCL入门系列之二】PCL模块介绍(一)
第一期内容中我们了解到,PCL官网上将PCL分为十四个功能模块(滤波器、特征、关键点、配准、Kd树、八叉树、分割、采样一致性、表面、范围图像、输入输出、可视化、常用、搜索),本期我们将粗略介绍部分模块的功能,帮助开发者定位可供自己应用的功能。
小白学视觉
2019/10/24
2.5K0
CVPR 2019 | 旷视等Oral论文提出GeoNet:基于测地距离的点云分析深度网络
基于网格曲面的几何拓扑信息可以为物体语义分析和几何建模提供较强的线索,但是,如此重要的连接性信息在点云中是缺失的。为此,旷视西雅图研究院首次提出一种全新的深度学习网络,称之为 GeoNet,可建模点云所潜在表征的网格曲面特征。
机器之心
2019/04/29
1K0
CVPR 2019 | 旷视等Oral论文提出GeoNet:基于测地距离的点云分析深度网络
三维点云语义分割总览
三维点云分割既需要了解全局几何结构,又需要了解每个点的细粒度细节。根据分割粒度的不同,三维点云分割方法可以分为三类:语义分割(场景级)、实例分割(对象级)和部分分割(部分级)。
点云PCL博主
2020/09/24
2.8K0
三维点云语义分割总览
远距离和遮挡下三维目标检测算法研究
近年来,随着卷积神经网络[1-2]的提出及其在计算机视觉[3]和自然语言处理[4]等领域的广泛应用,使得深度学习在二维的图像识别[5]、语义分割[6]以及目标检测[7]等领域有了重要的突破。目前,基于二维图像的目标检测算法已趋于成熟,并已经被广泛地应用到我们的生活中。
一点人工一点智能
2024/03/26
5160
远距离和遮挡下三维目标检测算法研究
推荐阅读
相关推荐
关于使用深度学习进行三维点云几何压缩
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档