前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >知识图谱中的关系推理

知识图谱中的关系推理

作者头像
机器学习AI算法工程
发布2019-10-28 17:41:51
3.8K0
发布2019-10-28 17:41:51
举报
文章被收录于专栏:机器学习AI算法工程
知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)(“实体”)和边(Edge)(“关系”)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

关系推理

就我的理解而言,虽然目前的知识图谱上已经有了非常多的实体对和关系事实,但是由于数据的更新迭代以及不完整性,注定了这个知识图谱的不完整,同样,他里面也隐藏着我们难以轻易发现的信息。在论文中,给出了一个非常经典的介绍:

For example, we may have no evidence directly linking Melinda Gates and Seattle, however, we may infer with some likelihood that Melinda–lives-in– Seattle, by observing that the KB contains the path Melinda–spouse–Bill–chairman–Microsoft–HQ-in–Seattle. 比如说,我们没有证据直接指明梅琳达·盖茨和西雅图的关系。然而,我们可以通过观察到知识图谱中包含这样的一条路径“梅琳达·盖茨 - 配偶 - 比尔·盖茨 -主席 - 微软 - 总部在 - 西雅图 ”,推测出梅林达可能居住在西雅图。 这就是一个完整的、从关系推导出结果的例子。

或许你会说,这条路径多简单,是个人都能猜到。那么从100条这样的路径中呢?你会得出怎样的信息,会如何对信息的选择进行预判,你得出的信息又到底是对是错?这就是关系推理需要进行的工作了。

目前国内外的关系推理模型主要基于三类:

先放两张便于大家理解的图

基于逻辑规则的关系推理

  1. 建模依据:采用抽象或具象的Horn子句
  2. 本质:基于逻辑规则进行推理
  3. 代表性工作:
    • 马尔科夫逻辑网络(Markov Logic Network)模型
    • 基于贝叶斯网络的概率关系模型(Probabilistic Relational Models)
    • 基于统计机器学习的FOIL(First Order Inductive Learner)算法
    • PRA算法(Path Ranking Alogorithm)
    • SFE(Subgraph Feature Extraction)算法
    • HiRi(Hierarchical Random-walk inference)算法
  4. 优势:能够模拟人类的逻辑推理能力,有可能引入人类的先验知识辅助推理
  5. 缺点:尚未有效解决优势所带来的的一系列问题,包括专家依赖、复杂度过高等问题
  6. 发展趋势
    1. 逐渐摒弃对人工规则的依赖
    2. 转而借助模式识别的方式进行规则(模式特征)发现
    3. 采用机器学习方法进行特征建模

基于知识表达的关系推理

  1. 建模依据:将实体和关系映射到一个低维的embedding空间中,基于知识的语义表达进行推理建模
  2. 代表性工作:
    • RESCAL张量分解模型(Tensor Factorization Model)
    • SE(Structured Embedding)关系推理算法
    • TransE(Translating Embedding)算法
    • TransH算法
    • TransM算法
    • TransG模型
  3. 优势:生成知识表达时能够充分利用知识图谱已有的结构化信息
  4. 缺点:建模方法着眼于实体间的直接关联关系,难以引入并利用人类的先验知识实现逻辑推理

基于深度学习的关系推理

  1. 代表性工作:
    • 单层感知机模型SLM(Single Layer Model)
    • NTN神经张量模型(Neural Tensor Networks)
    • DKRL(Description-Embodied Knowledge Representation Learning)模型
    • Path-RNN模型

然后这是以上概括的整体思维导图——

而在关系推理日益发展壮大的基础上,在为知识图谱扩容的时候,又可以倒过来为自动化知识质量评估技术做出贡献。也就是前面所说的怎么判断抽取到的资料,好不好、正不正确等。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-10-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习AI算法工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 关系推理
    • 基于逻辑规则的关系推理
      • 基于知识表达的关系推理
        • 基于深度学习的关系推理
        相关产品与服务
        灰盒安全测试
        腾讯知识图谱(Tencent Knowledge Graph,TKG)是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档