前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >为什么你学不会递归?

为什么你学不会递归?

作者头像
Java3y
发布于 2019-11-18 12:39:01
发布于 2019-11-18 12:39:01
58300
代码可运行
举报
文章被收录于专栏:Java3yJava3y
运行总次数:0
代码可运行

本文公众号来源:苦逼的码农

作者:帅地

本文已收录至我的GitHub

可能很多人在大一的时候,就已经接触了递归了,不过,我敢保证很多人初学者刚开始接触递归的时候,是一脸懵逼的,我当初也是,给我的感觉就是,递归太神奇了!

可能也有一大部分人知道递归,也能看的懂递归,但在实际做题过程中,却不知道怎么使用,有时候还容易被递归给搞晕。也有好几个人来问我有没有快速掌握递归的捷径啊。说实话,哪来那么多捷径啊,不过,我还是想写一篇文章,谈谈我的一些经验,或许,能够给你带来一些帮助。

为了兼顾初学者,我会从最简单的题讲起!

递归的三大要素

第一要素:明确你这个函数想要干什么

对于递归,我觉得很重要的一个事就是,这个函数的功能是什么,他要完成什么样的一件事,而这个,是完全由你自己来定义的。也就是说,我们先不管函数里面的代码什么,而是要先明白,你这个函数是要用来干什么。

例如,我定义了一个函数

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3
4}

这个函数的功能是算 n 的阶乘。好了,我们已经定义了一个函数,并且定义了它的功能是什么,接下来我们看第二要素。

第二要素:寻找递归结束条件

所谓递归,就是会在函数内部代码中,调用这个函数本身,所以,我们必须要找出递归的结束条件,不然的话,会一直调用自己,进入无底洞。也就是说,我们需要找出当参数为啥时,递归结束,之后直接把结果返回,请注意,这个时候我们必须能根据这个参数的值,能够直接知道函数的结果是什么。

例如,上面那个例子,当 n = 1 时,那你应该能够直接知道 f(n) 是啥吧?此时,f(1) = 1。完善我们函数内部的代码,把第二要素加进代码里面,如下

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3    if(n == 1){
4        return 1;
5    }
6}

有人可能会说,当 n = 2 时,那我们可以直接知道 f(n) 等于多少啊,那我可以把 n = 2 作为递归的结束条件吗?

当然可以,只要你觉得参数是什么时,你能够直接知道函数的结果,那么你就可以把这个参数作为结束的条件,所以下面这段代码也是可以的。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1// 算 n 的阶乘(假设n>=2)
2int f(int n){
3    if(n == 2){
4        return 2;
5    }
6}

注意我代码里面写的注释,假设 n >= 2,因为如果 n = 1时,会被漏掉,当 n <= 2时,f(n) = n,所以为了更加严谨,我们可以写成这样:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3    if(n <= 2){
4        return n;
5    }
6}

第三要素:找出函数的等价关系式

第三要素就是,我们要不断缩小参数的范围,缩小之后,我们可以通过一些辅助的变量或者操作,使原函数的结果不变。

例如,f(n) 这个范围比较大,我们可以让 f(n) = n * f(n-1)。这样,范围就由 n 变成了 n-1 了,范围变小了,并且为了原函数f(n) 不变,我们需要让 f(n-1) 乘以 n。

说白了,就是要找到原函数的一个等价关系式,f(n) 的等价关系式为 n * f(n-1),即

f(n) = n * f(n-1)。

这个等价关系式的寻找,可以说是最难的一步了,如果你不大懂也没关系,因为你不是天才,你还需要多接触几道题,我会在接下来的文章中,找 10 道递归题,让你慢慢熟悉起来

找出了这个等价,继续完善我们的代码,我们把这个等价式写进函数里。如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1// 算 n 的阶乘(假设n不为0)
2int f(int n){
3    if(n <= 2){
4        return n;
5    }
6    // 把 f(n) 的等价操作写进去
7    return f(n-1) * n;
8}

至此,递归三要素已经都写进代码里了,所以这个 f(n) 功能的内部代码我们已经写好了。

这就是递归最重要的三要素,每次做递归的时候,你就强迫自己试着去寻找这三个要素。

还是不懂?没关系,我再按照这个模式讲一些题。

有些有点小基础的可能觉得我写的太简单了,没耐心看?少侠,请继续看,我下面还会讲如何优化递归。当然,大佬请随意,可以直接拉动最下面留言给我一些建议,万分感谢!

案例1:斐波那契数列

斐波那契数列的是这样一个数列:1、1、2、3、5、8、13、21、34….,即第一项 f(1) = 1,第二项 f(2) = 1…..,第 n 项目为 f(n) = f(n-1) + f(n-2)。求第 n 项的值是多少。

1、第一递归函数功能

假设 f(n) 的功能是求第 n 项的值,代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2
3}

2、找出递归结束的条件

显然,当 n = 1 或者 n = 2 ,我们可以轻易着知道结果 f(1) = f(2) = 1。所以递归结束条件可以为 n <= 2。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2    if(n <= 2){
3        return 1;
4    }
5}

第三要素:找出函数的等价关系式

题目已经把等价关系式给我们了,所以我们很容易就能够知道 f(n) = f(n-1) + f(n-2)。我说过,等价关系式是最难找的一个,而这个题目却把关系式给我们了,这也太容易,好吧,我这是为了兼顾几乎零基础的读者。

所以最终代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2    // 1.先写递归结束条件
3    if(n <= 2){
4        return n;
5    }
6    // 2.接着写等价关系式
7    return f(n-1) + f(n - 2);
8}

搞定,是不是很简单?

零基础的可能还是不大懂,没关系,之后慢慢按照这个模式练习!好吧,有大佬可能在吐槽太简单了。

案例2:小青蛙跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

1、第一递归函数功能

假设 f(n) 的功能是求青蛙跳上一个n级的台阶总共有多少种跳法,代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2
3}

2、找出递归结束的条件

我说了,求递归结束的条件,你直接把 n 压缩到很小很小就行了,因为 n 越小,我们就越容易直观着算出 f(n) 的多少,所以当 n = 1时,你知道 f(1) 为多少吧?够直观吧?即 f(1) = 1。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2    if(n == 1){
3        return 1;
4    }
5}

第三要素:找出函数的等价关系式

每次跳的时候,小青蛙可以跳一个台阶,也可以跳两个台阶,也就是说,每次跳的时候,小青蛙有两种跳法。

第一种跳法:第一次我跳了一个台阶,那么还剩下n-1个台阶还没跳,剩下的n-1个台阶的跳法有f(n-1)种。

第二种跳法:第一次跳了两个台阶,那么还剩下n-2个台阶还没,剩下的n-2个台阶的跳法有f(n-2)种。

所以,小青蛙的全部跳法就是这两种跳法之和了,即 f(n) = f(n-1) + f(n-2)。至此,等价关系式就求出来了。于是写出代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2    if(n == 1){
3        return 1;
4    }
5    ruturn f(n-1) + f(n-2);
6}

大家觉得上面的代码对不对?

答是不大对,当 n = 2 时,显然会有 f(2) = f(1) + f(0)。我们知道,f(0) = 0,按道理是递归结束,不用继续往下调用的,但我们上面的代码逻辑中,会继续调用 f(0) = f(-1) + f(-2)。这会导致无限调用,进入死循环

这也是我要和你们说的,关于递归结束条件是否够严谨问题,有很多人在使用递归的时候,由于结束条件不够严谨,导致出现死循环。也就是说,当我们在第二步找出了一个递归结束条件的时候,可以把结束条件写进代码,然后进行第三步,但是请注意,当我们第三步找出等价函数之后,还得再返回去第二步,根据第三步函数的调用关系,会不会出现一些漏掉的结束条件。就像上面,f(n-2)这个函数的调用,有可能出现 f(0) 的情况,导致死循环,所以我们把它补上。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1int f(int n){
2    //f(0) = 0,f(1) = 1,等价于 n<=2时,f(n) = n。
3    if(n <= 2){
4        return n;
5    }
6    ruturn f(n-1) + f(n-2);
7}

有人可能会说,我不知道我的结束条件有没有漏掉怎么办?别怕,多练几道就知道怎么办了。

看到这里有人可能要吐槽了,这两道题也太容易了吧??能不能被这么敷衍。少侠,别走啊,下面出道难一点的。

下面其实也不难了,就比上面的题目难一点点而已,特别是第三步等价的寻找。

案例3:反转单链表。

反转单链表。例如链表为:1->2->3->4。反转后为 4->3->2->1

链表的节点定义如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1class Node{
2    int date;
3    Node next;
4}

虽然是 Java语言,但就算你没学过 Java,我觉得也是影响不大,能看懂。

还是老套路,三要素一步一步来。

1、定义递归函数功能

假设函数 reverseList(head) 的功能是反转但链表,其中 head 表示链表的头节点。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1Node reverseList(Node head){
2
3}

2. 寻找结束条件

当链表只有一个节点,或者如果是空表的话,你应该知道结果吧?直接啥也不用干,直接把 head 返回呗。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1Node reverseList(Node head){
2    if(head == null || head.next == null){
3        return head;
4    }
5}

3. 寻找等价关系

这个的等价关系不像 n 是个数值那样,比较容易寻找。但是我告诉你,它的等价条件中,一定是范围不断在缩小,对于链表来说,就是链表的节点个数不断在变小,所以,如果你实在找不出,你就先对 reverseList(head.next) 递归走一遍,看看结果是咋样的。例如链表节点如下

我们就缩小范围,先对 2->3->4递归下试试,即代码如下

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
1Node reverseList(Node head){
2    if(head == null || head.next == null){
3        return head;
4    }
5    // 我们先把递归的结果保存起来,先不返回,因为我们还不清楚这样递归是对还是错。,
6    Node newList = reverseList(head.next);
7}

我们在第一步的时候,就已经定义了 reverseLis t函数的功能可以把一个单链表反转,所以,我们对 2->3->4反转之后的结果应该是这样:

我们把 2->3->4 递归成 4->3->2。不过,1 这个节点我们并没有去碰它,所以 1 的 next 节点仍然是连接这 2。

接下来呢?该怎么办?

其实,接下来就简单了,我们接下来只需要把节点 2 的 next 指向 1,然后把 1 的 next 指向 null,不就行了?,即通过改变 newList 链表之后的结果如下:

也就是说,reverseList(head) 等价于 ** reverseList(head.next)** + 改变一下1,2两个节点的指向。好了,等价关系找出来了,代码如下(有详细的解释):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 1//用递归的方法反转链表
 2public static Node reverseList2(Node head){
 3    // 1.递归结束条件
 4    if (head == null || head.next == null) {
 5             return head;
 6         }
 7         // 递归反转 子链表
 8         Node newList = reverseList2(head.next);
 9         // 改变 1,2节点的指向。
10         // 通过 head.next获取节点2
11         Node t1  = head.next;
12         // 让 2 的 next 指向 2
13         t1.next = head;
14         // 1 的 next 指向 null.
15        head.next = null;
16        // 把调整之后的链表返回。
17        return newList;
18    }

这道题的第三步看的很懵?正常,因为你做的太少了,可能没有想到还可以这样,多练几道就可以了。但是,我希望通过这三道题,给了你以后用递归做题时的一些思路,你以后做题可以按照我这个模式去想。通过一篇文章是不可能掌握递归的,还得多练,我相信,只要你认真看我的这篇文章,多看几次,一定能找到一些思路!!

我已经强调了好多次,多练几道了,所以呢,后面我也会找大概 10 道递归的练习题供大家学习,不过,我找的可能会有一定的难度。不会像今天这样,比较简单,所以呢,初学者还得自己多去找题练练,相信我,掌握了递归,你的思维抽象能力会更强!

接下来我讲讲有关递归的一些优化。

有关递归的一些优化思路

1. 考虑是否重复计算

告诉你吧,如果你使用递归的时候不进行优化,是有非常非常非常多的子问题被重复计算的。

啥是子问题?f(n-1),f(n-2)….就是 f(n) 的子问题了。

例如对于案例2那道题,f(n) = f(n-1) + f(n-2)。递归调用的状态图如下:

看到没有,递归计算的时候,重复计算了两次 f(5),五次 f(4)。。。。这是非常恐怖的,n 越大,重复计算的就越多,所以我们必须进行优化。

如何优化?一般我们可以把我们计算的结果保证起来,例如把 f(4) 的计算结果保证起来,当再次要计算 f(4) 的时候,我们先判断一下,之前是否计算过,如果计算过,直接把 f(4) 的结果取出来就可以了,没有计算过的话,再递归计算。

用什么保存呢?可以用数组或者 HashMap 保存,我们用数组来保存把,把 n 作为我们的数组下标,f(n) 作为值,例如 arr[n] = f(n)。f(n) 还没有计算过的时候,我们让 arr[n] 等于一个特殊值,例如 arr[n] = -1。

当我们要判断的时候,如果 arr[n] = -1,则证明 f(n) 没有计算过,否则, f(n) 就已经计算过了,且 f(n) = arr[n]。直接把值取出来就行了。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 1// 我们实现假定 arr 数组已经初始化好的了。
 2int f(int n){
 3    if(n <= 1){
 4        return n;
 5    }
 6    //先判断有没计算过
 7    if(arr[n] != -1){
 8        //计算过,直接返回
 9        return arr[n];
10    }else{
11        // 没有计算过,递归计算,并且把结果保存到 arr数组里
12        arr[n] = f(n-1) + f(n-1);
13        reutrn arr[n];
14    }
15}

也就是说,使用递归的时候,必要 须要考虑有没有重复计算,如果重复计算了,一定要把计算过的状态保存起来。

2. 考虑是否可以自底向上

对于递归的问题,我们一般都是从上往下递归的,直到递归到最底,再一层一层着把值返回。

不过,有时候当 n 比较大的时候,例如当 n = 10000 时,那么必须要往下递归10000层直到 n <=1 才将结果慢慢返回,如果n太大的话,可能栈空间会不够用。

对于这种情况,其实我们是可以考虑自底向上的做法的。例如我知道

f(1) = 1;

f(2) = 2;

那么我们就可以推出 f(3) = f(2) + f(1) = 3。从而可以推出f(4),f(5)等直到f(n)。因此,我们可以考虑使用自底向上的方法来取代递归,代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 1public int f(int n) {
 2       if(n <= 2)
 3           return n;
 4       int f1 = 1;
 5       int f2 = 2;
 6       int sum = 0;
 7
 8       for (int i = 3; i <= n; i++) {
 9           sum = f1 + f2;
10           f1 = f2;
11           f2 = sum;
12       }
13       return sum;
14   }

这种方法,其实也被称之为递推

最后总结

其实,递归不一定总是从上往下,也是有很多是从下往上的,例如 n = 1 开始,一直递归到 n = 1000,例如一些排序组合。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-11-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Java3y 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
什么是递归--What does resursion mean?
在Google.com.hk或者在Google.com上搜索 递归或者recursion 发现Google“抽了”,明明搜索正确,为啥还显示一个查询错误的提示?如下两图:
Fisherman渔夫
2019/07/31
6060
什么是递归--What does resursion mean?
用例子理解递归
在说什么是递归之前,我想正在阅读的你应该会使用循环来解决一些问题了。那循环又是什么呢?循环是指在程序中需要反复执行某个功能而设置的一种程序结构。它由循环体中的条件,判断继续执行某个功能还是退出循环。
花狗Fdog
2020/11/09
1.2K0
递归_三要素_基础算法必备
递归_三要素_基础算法必备 目录 第一要素:明确函数作用 第二要素:递归结束条件 第三要素:函数等价关系 第一要素:明确函数作用 对于递归,我觉得很重要的一个事就是,这个函数的功能是什么,他要完成什么样的一件事,而这个,是完全由你自己来定义的。也就是说,我们先不管函数里面的代码什么,而是要先明白,你这个函数是要用来干什么。 // 算 n 的阶乘(假设n不为0) public static int f(int n){ } 这个函数的功能是算 n 的阶乘。我们已经定义了一个函数,并且定义了它的功能
红目香薰
2022/11/29
5640
递归_三要素_基础算法必备
死磕程序员必备算法:递归!
递归是一种非常重要的算法思想,无论你是前端开发,还是后端开发,都需要掌握它。在日常工作中,统计文件夹大小,解析xml文件等等,都需要用到递归算法。它太基础太重要了,这也是为什么面试的时候,面试官经常让我们手写递归算法。本文呢,将跟大家一起深入挖掘一下递归算法~
五分钟学算法
2020/10/30
4140
死磕程序员必备算法:递归!
终于弄懂算法中递归的执行过程
一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:
木野归郎
2022/02/25
3.8K0
终于弄懂算法中递归的执行过程
递归与动态规划---基础篇1
ps:最近几天正在刷一些有关动态规划的题,我会把自己学习时的想法以及做题的想法记录下来。(小白第一次写作,希望大家多多支持)
帅地
2018/08/30
7261
递归与动态规划---基础篇1
Leetcode题解 | 三步学会所有递归
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
用户3946442
2022/04/11
3460
Leetcode题解 | 三步学会所有递归
C语言:函数递归
递归的思想: 把⼀个⼤型复杂问题层层转化为⼀个与原问题相似,但规模较小的⼦问题来求解;直到⼦问题不能再被拆分,递归就结束了。所以递归的思考⽅式就是把⼤事化小的过程。
小陈在拼命
2024/02/17
2250
C语言:函数递归
剑指offer(01-15题)优化题解
思路: 选定一个维度(行或列)先找到需要查找的元素所在的行(列),再从该行(列)找到该元素的该元素具体的列(行)位置。复杂度O(n)。
bigsai
2020/02/19
5050
牛客网剑指offer-1
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
earthchen
2020/09/24
1.3K0
递归最佳解析
摘要:递归是一种应用非常广泛的算法(或者编程技巧)。之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。所以,搞懂递归非常重要,否则,后面复杂一些的数据结构和算法学起来就会比较吃力
码哥字节
2020/05/22
5990
剑指Offer-1
---- 做了又忘,忘了又做,怎么刷都是学不会啊啊啊 1 从每行每列都是递增的二维数组中找是否存在某数 public class Solution { public boolean Find(int target, int[][] array) { int rows = array.length; int cols = array[0].length; int i = rows - 1; int
晚上没宵夜
2020/12/08
3370
看动画轻松理解「递归」与「动态规划」
在学习「数据结构和算法」的过程中,因为人习惯了平铺直叙的思维方式,所以「递归」与「动态规划」这种带循环概念(绕来绕去)的往往是相对比较难以理解的两个抽象知识点。
五分钟学算法
2019/01/02
9090
面试算法题
题目来源于牛客网:https://www.nowcoder.com/ta/coding-interviews 1、二维数组中的查找 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从
程裕强
2018/01/02
2.3K0
Javascript函数之深入浅出递归思想,附案例与代码!
“递归”在生活中的一个典例就是“问路”。如图小哥哥进入电影院后找不到自己的座位,问身边的小姐姐“这是第几排”,小姐姐也不清楚便依次向前询问,问至第一排的观众后依次向后反馈结果,“我是第一排”,“我是第二排”,···,最终确定自己座位所在排数。
AI科技大本营
2020/03/10
9610
Javascript函数之深入浅出递归思想,附案例与代码!
递归算法
对于很多编程初学者来说,递归算法是学习语言的最大障碍之一。很多人也是半懂不懂,结果学到很深的境地也会因为自己基础不好,导致发展太慢。
Twcat_tree
2022/11/30
6230
递归算法
一些常用的算法技巧总结
数组的下标是一个隐含的很有用的数组,特别是在统计一些数字,或者判断一些整型数是否出现过的时候。例如,给你一串字母,让你判断这些字母出现的次数时,我们就可以把这些字母作为下标,在遍历的时候,如果字母a遍历到,则arr[a]就可以加1了,即 arr[a]++;
帅地
2018/11/29
9260
一些常用的算法技巧总结
写给小白看的递归(硬核)
认识递归,递归函数通常看起来简易但是对于初学者可能很难去理解它,拿一个递归函数来说。
bigsai
2021/07/22
4620
告别动态规划,连刷40道动规算法题,我总结了动规的套路
动态规划难吗?说实话,我觉得很难,特别是对于初学者来说,我当时入门动态规划的时候,是看 0-1 背包问题,当时真的是一脸懵逼。后来,我遇到动态规划的题,看的懂答案,但就是自己不会做,不知道怎么下手。就像做递归的题,看的懂答案,但下不了手,关于递归的,我之前也写过一篇套路的文章,如果对递归不大懂的,强烈建议看一看:为什么你学不会递归,告别递归,谈谈我的经验
帅地
2019/11/13
6.8K1
告别动态规划,连刷40道动规算法题,我总结了动规的套路
告别递归,从零开始一文学会递归解题
递归是算法中一种非常重要的思想,应用也很广,小到阶乘,再在工作中用到的比如统计文件夹大小,大到 Google 的 PageRank 算法都能看到,也是面试官很喜欢的考点
五分钟学算法
2019/12/05
6450
相关推荐
什么是递归--What does resursion mean?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档