1. 什么是seq2seq
在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如:
英语输⼊:“They”、“are”、“watching”、“.”
法语输出:“Ils”、“regardent”、“.”
当输⼊和输出都是不定⻓序列时,我们可以使⽤编码器—解码器(encoder-decoder)或者seq2seq模型。序列到序列模型,简称seq2seq模型。这两个模型本质上都⽤到了两个循环神经⽹络,分别叫做编码器和解码器。编码器⽤来分析输⼊序列,解码器⽤来⽣成输出序列。两 个循环神经网络是共同训练的。
下图描述了使⽤编码器—解码器将上述英语句⼦翻译成法语句⼦的⼀种⽅法。在训练数据集中,我们可以在每个句⼦后附上特殊符号“<eos>”(end of sequence)以表⽰序列的终⽌。编码器每个时间步的输⼊依次为英语句⼦中的单词、标点和特殊符号“<eos>”。下图中使⽤了编码器在 最终时间步的隐藏状态作为输⼊句⼦的表征或编码信息。解码器在各个时间步中使⽤输⼊句⼦的 编码信息和上个时间步的输出以及隐藏状态作为输⼊。我们希望解码器在各个时间步能正确依次 输出翻译后的法语单词、标点和特殊符号“<eos>”。需要注意的是,解码器在最初时间步的输⼊ ⽤到了⼀个表⽰序列开始的特殊符号“”(beginning of sequence)。
编码器的作⽤是把⼀个不定⻓的输⼊序列变换成⼀个定⻓的背景变量 c,并在该背景变量中编码输⼊序列信息。常⽤的编码器是循环神经⽹络。
在模型训练中,所有输出序列损失的均值通常作为需要最小化的损失函数。在上图所描述的模型预测中,我们需要将解码器在上⼀个时间步的输出作为当前时间步的输⼊。与此不同,在训练中我们也可以将标签序列(训练集的真实输出序列)在上⼀个时间步的标签作为解码器在当前时间步的输⼊。这叫作强制教学(teacher forcing)。
5. seq2seq模型预测
以上介绍了如何训练输⼊和输出均为不定⻓序列的编码器—解码器。本节我们介绍如何使⽤编码器—解码器来预测不定⻓的序列。
接下来,观察下面演⽰的例⼦。与上图中不同,在时间步2中选取了条件概率第⼆⼤的词“C” 。由于时间步3所基于的时间步1和2的输出⼦序列由上图中的“A”“B”变为了下图中的“A”“C”,下图中时间步3⽣成各个词的条件概率发⽣了变化。我们选取条件概率最⼤的词“B”。此时时间步4所基于的前3个时间步的输出⼦序列为“A”“C”“B”,与上图中的“A”“B”“C”不同。因此,下图中时间步4⽣成各个词的条件概率也与上图中的不同。我们发现,此时的输出序列“A”“C”“B”“<eos>”的条件概率是0.5 × 0.3 × 0.6 × 0.6 = 0.054,⼤于贪婪搜索得到的输出序列的条件概率。因此,贪婪搜索得到的输出序列“A”“B”“C”“<eos>”并⾮最优输出序列。
束搜索(beam search)是对贪婪搜索的⼀个改进算法。它有⼀个束宽(beam size)超参数。我们将它设为 k。在时间步 1 时,选取当前时间步条件概率最⼤的 k 个词,分别组成 k 个候选输出序列的⾸词。在之后的每个时间步,基于上个时间步的 k 个候选输出序列,从 k |Y| 个可能的输出序列中选取条件概率最⼤的 k 个,作为该时间步的候选输出序列。最终,我们从各个时间步的候选输出序列中筛选出包含特殊符号“<eos>”的序列,并将它们中所有特殊符号“<eos>”后⾯的⼦序列舍弃,得到最终候选输出序列的集合。
束宽为2,输出序列最⼤⻓度为3。候选输出序列有A、C、AB、CE、ABD和CED。我们将根据这6个序列得出最终候选输出序列的集合。在最终候选输出序列的集合中,我们取以下分数最⾼的序列作为输出序列:
评价机器翻译结果通常使⽤BLEU(Bilingual Evaluation Understudy)(双语评估替补)。对于模型预测序列中任意的⼦序列,BLEU考察这个⼦序列是否出现在标签序列中。
具体来说,设词数为 n 的⼦序列的精度为 pn。它是预测序列与标签序列匹配词数为 n 的⼦序列的数量与预测序列中词数为 n 的⼦序列的数量之⽐。举个例⼦,假设标签序列为A、B、C、D、E、F,预测序列为A、B、B、C、D,那么:
TensorFlow seq2seq的基本实现