温故而知新
OC是一门动态性比较强的编程语言,允许很多操作推迟到程序运行时再进行;OC的动态性就是由Runtime来支撑和实现的,Runtime是一套C语言的API,封装了很多动态性相关的函数;平时编写的OC代码,底层都是转换成了Runtime API进行调用。 应用:
1、涉及类的API:
& 动态创建一个类(参数:父类,类名,额外的内存空间)
Class objc_allocateClassPair(Class superclass, const char *name, size_t extraBytes)
& 注册一个类(要在类注册之前添加成员变量)
void objc_registerClassPair(Class cls)
& 销毁一个类
void objc_disposeClassPair(Class cls)
& 获取isa指向的Class
Class object_getClass(id obj)
& 设置isa指向的Class
Class object_setClass(id obj, Class cls)
& 判断一个OC对象是否为Class
BOOL object_isClass(id obj)
& 判断一个Class是否为元类
BOOL class_isMetaClass(Class cls)
& 获取父类
Class class_getSuperclass(Class cls)
2、涉及成员变量的API :
& 获取一个实例变量信息
Ivar class_getInstanceVariable(Class cls, const char *name)
& 拷贝实例变量列表(最后需要调用free释放)
Ivar *class_copyIvarList(Class cls, unsigned int *outCount)
& 设置和获取成员变量的值
void object_setIvar(id obj, Ivar ivar, id value)
id object_getIvar(id obj, Ivar ivar)
& 动态添加成员变量(已经注册的类是不能动态添加成员变量的)
BOOL class_addIvar(Class cls, const char * name, size_t size, uint8_t alignment, const char * types)
& 获取成员变量的相关信息
const char *ivar_getName(Ivar v)
const char *ivar_getTypeEncoding(Ivar v)
3、涉及属性的API
& 获取一个属性
objc_property_t class_getProperty(Class cls, const char *name)
& 拷贝属性列表(最后需要调用free释放)
objc_property_t *class_copyPropertyList(Class cls, unsigned int *outCount)
& 动态添加属性
BOOL class_addProperty(Class cls, const char *name, const objc_property_attribute_t *attributes,
unsigned int attributeCount)
& 动态替换属性
void class_replaceProperty(Class cls, const char *name, const objc_property_attribute_t *attributes,
unsigned int attributeCount)
& 获取属性的一些信息
const char *property_getName(objc_property_t property)
const char *property_getAttributes(objc_property_t property)
4、涉及方法的API
& 获得一个实例方法、类方法
Method class_getInstanceMethod(Class cls, SEL name)
Method class_getClassMethod(Class cls, SEL name)
& 方法实现相关操作
IMP class_getMethodImplementation(Class cls, SEL name)
IMP method_setImplementation(Method m, IMP imp)
void method_exchangeImplementations(Method m1, Method m2)
& 拷贝方法列表(最后需要调用free释放)
Method *class_copyMethodList(Class cls, unsigned int *outCount)
& 动态添加方法
BOOL class_addMethod(Class cls, SEL name, IMP imp, const char *types)
& 动态替换方法
IMP class_replaceMethod(Class cls, SEL name, IMP imp, const char *types)
& 获取方法的相关信息(带有copy的需要调用free去释放)
SEL method_getName(Method m)
IMP method_getImplementation(Method m)
const char *method_getTypeEncoding(Method m)
unsigned int method_getNumberOfArguments(Method m)
char *method_copyReturnType(Method m)
char *method_copyArgumentType(Method m, unsigned int index)
& 选择器相关
const char *sel_getName(SEL sel)
SEL sel_registerName(const char *str)
& 用block作为方法实现
IMP imp_implementationWithBlock(id block)
id imp_getBlock(IMP anImp)
BOOL imp_removeBlock(IMP anImp)
OC中的方法调用其实都是转成了objc_msgSend函数的调用,给receiver(方法调用者)发送了一条消息(selector方法名)。
Class的结构
objc_msgSend底层有3大阶段:消息发送(当前类、父类中查找)、动态方法解析、消息转发。
消息发送
动态方法解析
利用RunTime动态添加方法
消息转发
isMemberOfClass 和 isKindOfClass 底层实现
@property有两个对应的词,一个是 @synthesize,一个是 @dynamic。如果 @synthesize和 @dynamic都没写,那么默认的就是@syntheszie var = _var;
@synthesize 表示如果属性没有手动实现setter和getter方法,编译器会自动加上这两个方法。 @dynamic 告诉编译器:属性的 setter 与 getter 方法由用户自己实现,不自动生成。
RunLoop应用
RunLoop相关的类
CFRunLoopModeRef:RunLoop的运行模式
常见的几种Mode
CFRunLoopSourceRef:输入源 / 事件源。 Source 有两个版本:Source0 和 Source1。Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source0 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。Source1 包含了一个 mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source1 能主动唤醒 RunLoop 的线程。
CFRunLoopTimerRef:基于时间的触发器。它和 NSTimer 是 toll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop 会注册对应的时间点,当时间点到时,RunLoop 会被唤醒以执行那个回调。
CFRunLoopObserverRef:观察监听RunLoop的活动状态。每个 Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受到这个变化。可以观察到的状态如下图:
RunLoop的活动状态
RunLoop 模型图
RunLoop的运行逻辑
RunLoop的运行逻辑
(1) 简单从字面上来说,就是低优先级的任务先于高优先级的任务执行了,优先级搞反了。那在什么情况下会生这种情况呢? 假设三个任务准备执行,A,B,C,优先级依次是A>B>C; 首先:C处于运行状态,获得CPU正在执行,同时占有了某种资源; 其次:A进入就绪状态,因为优先级比C高,所以获得CPU,A转为运行状态;C进入就绪状态; 第三:执行过程中需要使用资源,而这个资源又被等待中的C占有的,于是A进入阻塞状态,C回到运行状态; 第四:此时B进入就绪状态,因为优先级比C高,B获得CPU,进入运行状态;C又回到就绪状态; 第五:如果这时又出现B2,B3等任务,他们的优先级比C高,但比A低,那么就会出现高优先级任务的A不能执行,反而低优先级的B,B2,B3等任务可以执行的奇怪现象,而这就是优先反转。 (2)如何解决优先级反转 高优先级任务A不能执行的原因是C霸占了资源,而C如果不能获得CPU,不释放资源,那A也只好一直等在那,所以解决优先级反转的原则肯定就是让C尽快执行,尽早把资源释放了。基于这个原则产生了两个方法: 2.1 优先级继承 当发现高优先级的任务因为低优先级任务占用资源而阻塞时,就将低优先级任务的优先级提升到等待它所占有的资源的最高优先级任务的优先级。 2.2 优先级天花板 优先级天花板是指将申请某资源的任务的优先级提升到可能访问该资源的所有任务中最高优先级任务的优先级.(这个优先级称为该资源的优先级天花板) 2.3 两者的区别 优先级继承:只有一个任务访问资源时一切照旧,没有区别,只有当高优先级任务因为资源被低优先级占有而被阻塞时,才会提高占有资源任务的优先级;而优先级天花板,不论是否发生阻塞,都提升,即谁先拿到资源,就将这个任务提升到该资源的天花板优先级。
什么情况使用自旋锁比较划算?
什么情况使用互斥锁比较划算?
如果需要跟我交流的话: ※ Github: https://github.com/wsl2ls ※ 简书:https://www.jianshu.com/u/e15d1f644bea ※ 微信公众号:iOS2679114653 ※ QQ群:835303405