计算距离
def euclid(x_train,y_train,sample):
"""
:function: 基于类中心的模板匹配法
:param x_train:训练集 M*N M为样本个数 N为特征个数
:param y_train:训练集标签 1*M
:param sample: 待识别样品
:return: 返回判断类别
"""
disMin = np.inf
label = 0
#去除标签重复元素
target = np.unique(y_train)
for i in target:
#将同一类别的数据下标集中到一起
trainId =([j for j,y in enumerate(y_train) if y==i])
train = x_train[trainId,:]
trainMean = np.mean(train, axis=0)
dis = np.dot((sample-trainMean),(sample - trainMean).T)
if(disMin>dis):
disMin = dis
label = i
return label
划分数据集
def train_test_split(x,y,ratio = 3):
"""
:function: 对数据集划分为训练集、测试集
:param x: m*n维 m表示数据个数 n表示特征个数
:param y: 标签
:param ratio: 产生比例 train:test = 3:1(默认比例)
:return: x_train y_train x_test y_test
"""
n_samples , n_train = x.shape[0] , int(x.shape[0]*(ratio)/(1+ratio))
train_id = random.sample(range(0,n_samples),n_train)
x_train = x[train_id,:]
y_train = y[train_id]
x_test = np.delete(x,train_id,axis = 0)
y_test = np.delete(y,train_id,axis = 0)
return x_train,y_train,x_test,y_test
测试
from sklearn import datasets
from Include.chapter3 import function
import numpy as np
#读取数据
digits = datasets.load_digits()
x , y = digits.data,digits.target
#划分数据集
x_train, y_train, x_test, y_test = function.train_test_split(x,y)
testId = np.random.randint(0, x_test.shape[0])
sample = x_test[testId, :]
ans = function.euclid(x_train,y_train,sample)
print(ans==y_test[testId])
True