前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【Python可视化】超详细Pyecharts 1.x教程,让你的图表动起来~

【Python可视化】超详细Pyecharts 1.x教程,让你的图表动起来~

作者头像
Awesome_Tang
发布于 2020-02-25 08:13:01
发布于 2020-02-25 08:13:01
3.1K00
代码可运行
举报
文章被收录于专栏:FSocietyFSociety
运行总次数:0
代码可运行

前言

pyecharts 是一个用于生成 Echarts 图表的Python库。Echarts是百度开源的一个数据可视化 JS 库,可以生成一些非常酷炫的图表。

AQI指数

Pyecharts在1.x版本之后迎来重大更新,与老版本(0.5X)已是两个完全不同的版本,所以很多小伙伴在使用Pyecharts出现了类似'pyecharts' has no attribute 'xxx'的报错,那是因为你安装了1.x的版本却使用了0.5x的调用方法。

  • 当然如果你更习惯使用0.5X版本的可以通过如下语句来进行安装: pip install pyecharts==0.5.11
  • 安装1.x版本(仅支持Python 3.6+): pip install pyecharts

本文将会介绍Pyecharts1.x版本的使用方法,本文所有语句均基于v1.6.2,通过以下语句查询使用pyecharts版本:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import pyecharts

print(pyecharts.__version__)

基本使用

链式调用

pyecharts在v1.x之后支持链式调用,具体语句如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import Bar
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

# 1.x版本支持链式调用
bar = (Bar()
       .add_xaxis(cate)
       .add_yaxis('电商渠道', data1)
       .add_yaxis('门店', data2)
       .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
      )
# 在jupyter notebook总渲染
bar.render_notebook()
单独调用

不习惯链式调用的开发者依旧可以单独调用方法。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 单独调用
bar = Bar()
bar.add_xaxis(cate)
bar.add_yaxis('电商渠道', data1)
bar.add_yaxis('门店', data2)
bar.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
bar.render_notebook()
全局配置

可以通过全局配置(.set_global_opts():)控制以下区域

使用示例如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
"""
全局配置项使用示例:
1. 标题 & 副标题
2. 关闭图例
3. 显示工具箱
"""
bar = (Bar()
       .add_xaxis(cate)
       .add_yaxis('电商渠道', data1)
       .add_yaxis('门店', data2)
       .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"),
                        toolbox_opts=opts.ToolboxOpts(),
                        legend_opts=opts.LegendOpts(is_show=False))
      )

bar.render_notebook()
系列配置

可以通过系列配置(.set_series_opts())控制图表中的文本,线样式,标记等,使用示例如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
"""
系列配置项使用示例:
1. 不显示数值
2. 标记每个系列的最大值
"""
bar = (Bar()
       .add_xaxis(cate)
       .add_yaxis('电商渠道', data1)
       .add_yaxis('门店', data2)
       .set_series_opts(label_opts=opts.LabelOpts(is_show=False),
                        markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),]))
       .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
      )

bar.render_notebook()

基本图表

饼图
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import Pie
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [153, 124, 107, 99, 89, 46]

pie = (Pie()
       .add('', [list(z) for z in zip(cate, data)],
            radius=["30%", "75%"],
            rosetype="radius")
       .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题"))
       .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
      )

pie.render_notebook()
折线图
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import Line
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
       .add_xaxis(cate)
       .add_yaxis('电商渠道', data1, 
                  markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
       .add_yaxis('门店', data2, 
                  is_smooth=True, 
                  markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", 
                                                                             coord=[cate[2], data2[2]], value=data2[2])]))
       .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题"))
      )

line.render_notebook()
漏斗图
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import Funnel
from pyecharts import options as opts

# 示例数据
cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功']
data = [30398, 15230, 10045, 8109, 5698]

"""
漏斗图示例:
1. sort_控制排序,默认降序;
2. 标签显示位置
"""
funnel = (Funnel()
          .add("用户数", [list(z) for z in zip(cate, data)], 
               sort_='ascending',
               label_opts=opts.LabelOpts(position="inside"))
          .set_global_opts(title_opts=opts.TitleOpts(title="Funnel-基本示例", subtitle="我是副标题"))
         )

funnel.render_notebook()

热力图

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import HeatMap
from pyecharts import options as opts
from pyecharts.faker import Faker
import random

# 示例数据
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]

heat = (HeatMap()
        .add_xaxis(Faker.clock)
        .add_yaxis("访客数", 
                   Faker.week, 
                   data,
                   label_opts=opts.LabelOpts(is_show=True, position="inside"))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="HeatMap-基本示例", subtitle="我是副标题"),
            visualmap_opts=opts.VisualMapOpts(),
            legend_opts=opts.LegendOpts(is_show=False))
       )

heat.render_notebook()

日历图

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import Calendar
from pyecharts import options as opts
import random
import datetime

# 示例数据
begin = datetime.date(2019, 1, 1)
end = datetime.date(2019, 12, 31)
data = [[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
        for i in range((end - begin).days + 1)]

"""
日历图示例:
"""
calendar = (
        Calendar()
        .add("微信步数", data, calendar_opts=opts.CalendarOpts(range_="2019"))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Calendar-基本示例", subtitle="我是副标题"),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                max_=25000,
                min_=1000,
                orient="horizontal",
                is_piecewise=True,
                pos_top="230px",
                pos_left="100px",
            )
        )
    )

calendar.render_notebook()
地理系图表
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Map
import random

province = ['广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏']
data = [(i, random.randint(50, 150)) for i in province]

_map = (
        Map()
        .add("销售额", data, "china")
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Map-基本示例"),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True),
        )
    )

_map.render_notebook()
地理热点图
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
import random

province = ['武汉', '十堰', '鄂州', '宜昌', '荆州', '孝感', '黄石', '咸宁', '仙桃']
data = [(i, random.randint(50, 150)) for i in province]

geo = (Geo()
        .add_schema(maptype="湖北")
        .add("门店数", data,
            type_=ChartType.HEATMAP)
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            visualmap_opts=opts.VisualMapOpts(),
            legend_opts=opts.LegendOpts(is_show=False),
            title_opts=opts.TitleOpts(title="Geo-湖北热力地图"))
      )

geo.render_notebook()
3D散点图
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Scatter3D
from pyecharts.faker import Faker
import random


data = [[random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)]
        for _ in range(1000)]

scatter3D = (Scatter3D()
             .add("", data)
             .set_global_opts(
                 title_opts=opts.TitleOpts("Scatter3D-基本示例"),
                 visualmap_opts=opts.VisualMapOpts(range_color=Faker.visual_color))
            )

scatter3D.render_notebook()

其他特性

xy轴翻转
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts.charts import Bar
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

bar = (Bar()
       .add_xaxis(cate)
       .add_yaxis('电商渠道', data1)
       .add_yaxis('门店', data2)
       .set_global_opts(title_opts=opts.TitleOpts(title="XY轴翻转-基本示例", subtitle="我是副标题"))
       .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
       .reversal_axis()
      )

bar.render_notebook()
组合图表
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Map, Bar, Grid
from pyecharts.globals import ChartType, ThemeType
import random

province = ['武汉', '十堰', '鄂州', '宜昌', '荆州', '孝感', '黄石', '咸宁', '仙桃']
data = [324, 125, 145, 216, 241, 244, 156, 278, 169]

bar = (Bar()
       .add_xaxis(province)
       .add_yaxis('营业额', data)
       .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
       .set_global_opts(
            title_opts=opts.TitleOpts(title="Grid-Bar")
        )
      )

line = (Line()
       .add_xaxis(province)
       .add_yaxis('营业额', data, 
                  markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
       .set_global_opts(title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%"))
      )

grid = (
        Grid()
        .add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
        .add(line, grid_opts=opts.GridOpts(pos_top="60%"))
    )

grid.render_notebook()
主题设置
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

"""
主题设置:
默认white
"""
bar = (Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
       .add_xaxis(cate)
       .add_yaxis('电商渠道', data1)
       .add_yaxis('门店', data2)
       .set_series_opts(label_opts=opts.LabelOpts(is_show=False),
                        markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),]))
       .set_global_opts(title_opts=opts.TitleOpts(title="Theme-ROMANTIC"))
      )

bar.render_notebook()
时间轴
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Bar, Timeline
from pyecharts.globals import ThemeType
import random

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']

tl = Timeline()
for i in range(2015, 2020):
    bar = (
        Bar()
        .add_xaxis(cate)
        .add_yaxis("线上", [random.randint(50, 150) for _ in cate])
        .add_yaxis("门店", [random.randint(100, 200) for _ in cate])
        .set_global_opts(title_opts=opts.TitleOpts("手机品牌{}年营业额".format(i)))
    )
    tl.add(bar, "{}年".format(i))
    
tl.render_notebook()
航线图
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType, ThemeType
import requests

r = requests.get('https://echarts.baidu.com/examples/data-gl/asset/data/flights.json')
data = r.json()

city = ['Beijing']
airports_code = []

geo = Geo(init_opts=opts.InitOpts(theme=ThemeType.DARK))
for i, airport in enumerate(data['airports']):
    if airport[1] in city:
        geo.add_coordinate(i, airport[3], airport[4])
        airports_code.append(i)

route = [(x, y) for _, x, y in data['routes'] if x in airports_code]


geo.add_schema(maptype="world",
                itemstyle_opts=opts.ItemStyleOpts())
geo.add("geo", route, 
        is_large = True,
        symbol_size=0,
        type_='lines',
        is_polyline=True,
        effect_opts=opts.EffectOpts(symbol='pin', symbol_size=1, trail_length=1, color="rgba(255,69,0,0.9)"),
        linestyle_opts=opts.LineStyleOpts(curve=0.2, width=0.2, color='rgb(245,245,245)',opacity=0.05)
       )
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.set_global_opts(title_opts=opts.TitleOpts(title="北京发出所有航线"),
                   legend_opts=opts.LegendOpts(is_show=False))


geo.render_notebook()

整理不易,欢迎点赞收藏✨✨✨

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
原创 | 一文读懂正态分布与贝塔分布
正态分布,是一种非常常见的连续概率分布,其也叫做常态分布(normal distribution),或者根据其前期的研究贡献者之一高斯的名字来称呼,高斯分布(Gaussian distribution)。正态分布是自然科学与行为科学中的定量现象的一个方便模型。
数据派THU
2020/09/30
2.8K0
​常用的连续概率分布汇总
在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。
deephub
2021/11/08
1.9K0
​常用的连续概率分布汇总
​常见的8个概率分布公式和可视化
概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。
deephub
2022/06/04
8790
​常见的8个概率分布公式和可视化
【机器学习】因微知著,穷数通灵:微积分与机器学习的量化之美
在机器学习的学习旅程中,微积分不仅是理解单变量变化的工具,更是处理多变量和复杂系统的关键。上一篇文章中,我们详细讲解了积分的基本概念与计算方法,并通过实战项目展示了积分在概率与统计中的应用。本篇文章将进一步探讨多重积分与微分方程,这两者在机器学习中的应用广泛且重要。通过理论与实践相结合的方式,你将能够更好地理解和运用这些高级微积分概念。
半截诗
2025/01/09
2620
【机器学习】因微知著,穷数通灵:微积分与机器学习的量化之美
机器学习统计概率分布全面总结(Python)
在平时的科研中,我们经常使用统计概率的相关知识来帮助我们进行城市研究。因此,掌握一定的统计概率相关知识非常有必要。
算法进阶
2023/12/26
6280
机器学习统计概率分布全面总结(Python)
【数学基础篇】--详解人工智能之数学 积分学,概率空间,大数定律和中心极限定理
牛顿-莱布尼茨公式展示了微分与积分的基本关系: 在一定程度上微分与积分互 为逆运算.
LhWorld哥陪你聊算法
2018/09/13
9640
【数学基础篇】--详解人工智能之数学 积分学,概率空间,大数定律和中心极限定理
蒙特卡罗计算积分
通常情况下,我们不能解析地求解积分,必须借助其他方法,其中就包括蒙特卡罗积分。你可能还记得,函数的积分可以解释为函数曲线下的面积。
磐创AI
2020/11/09
8210
蒙特卡罗计算积分
笔记:Gamma 分布的转化
就说 X 是服从参数为 (β,α) 的 Gamma 分布,记为Γ(β,α)。Gamma 分布的两个参数中,第一个β 决定了形状 (shape),第二个参数α 决定了尺度 (scale)。
四火
2022/07/15
2.7K0
笔记:Gamma 分布的转化
Python中概率累计分布函数(CDF)分析
PDF:连续型随机变量的概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
用户8949263
2022/05/25
13K0
Python中概率累计分布函数(CDF)分析
从不定积分到斯托克斯公式
学完高数的人都知道,我的标题其实是写了涵盖了所有的积分学知识。主要是整理内容,串成一条线。初读书很厚,读到现在又很薄。
云深无际
2024/10/29
1640
从不定积分到斯托克斯公式
11种概率分布,你了解几个?
了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的 从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。
double
2019/10/08
20.9K0
11种概率分布,你了解几个?
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
在机器学习的学习旅程中,微积分不仅仅是理论的支撑,更是实际应用的关键工具。上一篇文章中,我们探讨了极限与连续性以及导数的概念与应用,特别是在梯度下降法中的应用。本篇文章将继续深入,重点讲解积分的概念与计算,以及它在机器学习中的实际应用。
半截诗
2025/01/09
1410
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
概率论基础 - 11 - 高斯分布 / 正态分布
本文记录高斯分布。 高斯分布 / 正态分布 正态分布是很多应用中的合理选择。如果某个随机变量取值范围是实数,且对它的概率分布一无所知,通常会假设它服从正态分布。有两个原因支持这一选择: 建模的任务的真实分布通常都确实接近正态分布。 中心极限定理表明,多个独立随机变量的和近似正态分布。 在具有相同方差的所有可能的概率分布中,正态分布的熵最大(即不确定性最大)。 一维正态分布 正态分布的概率密度函数为: p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e{-(x-\mu){2}
为为为什么
2022/08/05
1.6K0
概率论基础 - 11 - 高斯分布 / 正态分布
单变量和多变量高斯分布:可视化理解
高斯分布是统计中最重要的概率分布,在机器学习中也很重要。因为很多自然现象,比如人口的身高,血压,鞋子的尺码,教育指标,考试成绩,还有很多更重要的自然因素都遵循高斯分布。
deephub
2020/10/19
1.3K0
单变量和多变量高斯分布:可视化理解
机器学习储备(13):概率密度和高斯分布例子解析
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 前面介绍到关于概率论中离散型随机变量,和一个离散型相关的经典分布:二分分布,大家想了解的可以参考: 机器学习储备(11):说说离散型随机变量 机器学习储备(12):二项分布的例子解析 理解这些基本的概念和理论,对于我们掌握机器学习的许多算法都是非常有帮助的,比如在分类或聚类时,如果能得出某个样本点属于某个类别的概率,那么无疑是非常
double
2018/04/02
1.3K0
机器学习储备(13):概率密度和高斯分布例子解析
理解概率密度函数
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
SIGAI学习与实践平台
2018/10/31
1.5K0
理解概率密度函数
Python实现 8 个概率分布公式及可视化
概率和统计知识是数据科学和机器学习的核心; 我们需要统计和概率知识来有效地收集、审查、分析数据。
数据STUDIO
2022/05/24
1.3K0
Python实现 8 个概率分布公式及可视化
可视化数据科学中的概率分布以帮你更好地理解各种分布
在某些分布假设下,某些机器学习模型被设计为最佳工作。因此,了解我们正在使用哪个发行版可以帮助我们确定最适合使用哪些模型。
计算机与AI
2020/11/19
1K0
可视化数据科学中的概率分布以帮你更好地理解各种分布
深度学习500问——Chapter01:数学基础
深度学习通常又需要哪些数学基础?深度学习里的数学到底难在哪里?通常初学者都会有这些问题,在网络推荐及书本的推荐里,经常看到会列出一系列数学科目,比如微积分、线性代数、概率论、复变函数、数值计算、优化理论、信息论等等。这些数学知识有相关性,但实际上按照这样的知识范围来学习,学习成本会很久,而且会很枯燥。本章我们通过选举一些数学基础里容易混肴的一些概念作以介绍,帮助大家更好的理清这些易混肴概念之间的关系。
JOYCE_Leo16
2024/03/19
3430
深度学习500问——Chapter01:数学基础
理解概率密度函数
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
SIGAI学习与实践平台
2018/12/06
1.1K0
推荐阅读
相关推荐
原创 | 一文读懂正态分布与贝塔分布
更多 >
LV.1
这个人很懒,什么都没有留下~
目录
  • 前言
  • 基本使用
    • 链式调用
    • 单独调用
    • 全局配置
    • 系列配置
  • 基本图表
    • 饼图
    • 折线图
    • 漏斗图
  • 热力图
  • 日历图
    • 地理系图表
    • 地理热点图
    • 3D散点图
  • 其他特性
    • xy轴翻转
    • 组合图表
    • 主题设置
    • 时间轴
    • 航线图
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档