如果是可重复读级别. 事务T启动的时候会创建一个视图read-view. 之后事务T之星期间, 即使有其他事务修改了数据, 事务T看到的仍然跟在启动时候看到的一样.
也就是说, 在可重复读隔离级别下执行事务, 好像与世无争. 不受外界影响.
但是在学习行锁的时候, 又提到了, 一个事务要更新一行, if 刚好有另外一个事务拥有这一行的行锁, 它又不不能这么超然了, 会被锁住. 进入等待状态. 问题是, 既然进入了等待状态, 那么等到这个事务自己获取到行锁要更新数据的时候, 他读到又是什么呢?
举个栗子: 下面是一个只有两行的表的初始化语句.
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL,
`k` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);
这里我们要注意的是事务的启动时机.
begin/start transaction 命令并不是一个事务的起点, 在执行到他们之后的第一个操作innodb表的语句, 才是真正的启动.
如果想立刻启动一个一个事务可以使用transaction with consistent snapshot 这个命令.
一般默认的autocommit = 1;
在这个例子中,
事务c没有没有显式的使用begin/commit, 表示update 这个语句本身就是一个事务. 语句完成的时候会自动提交.
事务B在更新了行之后查询
事务A在一个只读事务中查询
结果: B的k值是3, A 的K值是1,
解惑
在mysql里, 有两个"视图"的概念
他没有物理结构, 作用是事务执行期间用来定义. "我能看到什么数据"
"快照"在mvcc里是如何工作的?
在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。
快照是如何实现的?
InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。
而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id
也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。
图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25
那么undo log 在哪?
事实上. 上图的三个虚线剪头就是undo log.
而v1. v2. v3. 并不是物理上真实存在的. 而是每次需要的时候根据当前的版本和undo log 计算出来的.
比如. 需要v2的时候, 就是通过V4 依次的执行U3 U2算出来的.
innodb是怎么定义个"100G"的快照的?
按照可重复读的定义, 当一个事务启动的时候, 能够看到所有已经提交的事务结果. 但是之后这个事务执行期间, 其他事务更新对他不可见.
因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。
当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。
在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。
数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。
这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。
而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。
这个视图数组把所有的 row trx_id 分成了几种不同的情况。
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:
比如,对于上上图的数据来说,如果有一个事务,它的低水位是 18,那么当它访问这一行数据时,就会从 V4 通过 U3 计算出 V3,所以在它看来,这一行的值是 11。
有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了.
InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。
我们继续看一下上上上图中的三个事务. 分析下事务A的语句返回的结果. 为什么返回的k=1
做一个假设:
这样,事务 A 的视图数组就是[99,100], 事务 B 的视图数组是[99,100,101], 事务 C 的视图数组是[99,100,101,102]
为了简化分析,先把其他干扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:
从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。
第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。
你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了
好,现在事务 A 要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:
这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。
一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:
用这个规则来判断上图中的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:
更新逻辑
有一个问题: 事务B的update语句 如果按照一致性读, 好像结果不太对.
看下图. 事务B的视图数组是先生成的. 之后事务c才提交, 不是应该看不见1,2 怎么能算出来1, 3 呢?
是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1
但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作.
所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)
因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101
所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3
这里我们提到了一个概念,叫作当前读。其实,除了 update 语句外,select 语句如果加锁,也是当前读
所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3。下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)
mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;
再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?
事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。那么,事务 B 的更新语句会怎么处理呢?
这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读
到这里,我们把一致性读、当前读和行锁就串起来了。
现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的?
可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。
而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:
在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?
这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的 start transaction
下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。(注意:这里,我们用的还是事务 C 的逻辑直接提交,而不是事务 C’)
这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:
所以,这时候事务 A 查询语句返回的是 k=2。
显然地,事务 B 查询结果 k=3。
InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图确定数据版本的可见性。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。