这一次的内容太多了,我讲了 2 小时都没讲完,后续再放视频吧。有一段还忘记录了。。。涉及编程的数据和代码都会放到 https://github.com/XSLiuLab/Workshop
内容:
read.*与 write.*load 与 savereadRDS 与 saveRDSread_*%>%x %>% f(y) > f(x, y)containsnum_rangestarts_withends_withone_ofmatchesslice, filter, sample_n, sample_frac, top_n, distinctselectarrange+ - * / > < ==dplyr:: lag leaddplyr:: cumall cumany cummax cummean cummin cumprod cumsumdplyr:: cume_dist dense_rank min_rank ntile percent_rank row_numberdplyr:: between case_when coalesce if_else na_if pmax pmin recode recode_factormutate, transmutemutate_add_rowadd_columnrenamerownames_to_column, column_to_rownamedplyr:: n n_distinct base::sum(!is.na())mean, meadianmean, sumdplyr:: first last nthquantile min maxIQR mad sd varcountsummarizegroup_by, ungroupbind_rowsbind_colssemi_joinanti_joinleft_join, right_join, inner_join, full_joinintersectsetdiffunionsetequal 辅助查看两个数据集是否相同(不管行序)_at, _if, _all)filter_*select_*summarize_*arrange_*substrstringr包与正则表达式略微复杂,可以单独讲一次

tibbletribble, enframeas_tibble, is_tibbledrop_nafillreplace_napivot_wider, spread
pivot_longer, gather
expandcompleteseparateseparate_rowsunitewrite_*freadfwritedt[i, j, by]本期未讲述的内容???
base 与 stringrpurrrstats 与 broomgraphics 与 ggplot2apply家族和purrr等开发:
[1]
《R for Data Science》: http://r4ds.had.co.nz/