前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >R语言-简单线性回归

R语言-简单线性回归

作者头像
黑妹的小屋
发布2020-08-06 11:50:24
发布2020-08-06 11:50:24
6100
举报

R语言基础知识:

简单线性回归

> fit <- lm(weight ~height,data=women)

> summary(fit)

Call:

lm(formula = weight ~ height, data = women)

Residuals:

Min 1Q Median 3Q Max

-1.7333 -1.1333 -0.3833 0.7417 3.1167

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***

height 3.45000 0.09114 37.85 1.09e-14 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.525 on 13 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.9903

F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

> women$weight

[1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

> fitted(fit)

1 2 3 4 5 6 7 8 9 10

112.5833 116.0333 119.4833 122.9333 126.3833 129.8333 133.2833 136.7333 140.1833 143.6333

11 12 13 14 15

147.0833 150.5333 153.9833 157.4333 160.8833

> residuals(fit)

1 2 3 4 5 6 7

2.41666667 0.96666667 0.51666667 0.06666667 -0.38333333 -0.83333333 -1.28333333

8 9 10 11 12 13 14

-1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.53333333 0.01666667 1.56666667

15

3.11666667

> plot(women

> abline(fit)

公式:

因为身高不可能为0,它仅仅是一个常量调整整 。在Pr(>|t|) ,可以看到回归系数(3.45)显著不为0(p<0.001),表明身高每增高1英寸 体重将预期增加3.45磅 ,R平方 (0.991)表明模型可以解释体 99.1%的方差,它也是实际和预测之间的相关系数(R2 = r2YY)。残差标准 (1.53 lbs) 可认为是模型用身高预测体重的平均误差。F统计检验量所有的预测响应量预测量是否都在某个几水平之上。由于简单回归只有一个预测边量,此 F检验等同于身高回归系数的t 检验。

##数据来源:《R语言实战》

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-12-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 菜鸟学数据分析之R语言 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档