前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Kubeflow实战: 入门介绍与部署实践

Kubeflow实战: 入门介绍与部署实践

作者头像
用户1154259
发布2020-08-11 10:43:45
4.4K0
发布2020-08-11 10:43:45
举报

1 介绍

Kubeflow是在k8s平台之上针对机器学习的开发、训练、优化、部署、管理的工具集合,内部集成的方式融合机器学习中的很多领域的开源项目,比如Jupyter、tfserving、Katib、Fairing、Argo等。可以针对机器学习的不同阶段:数据预处理、模型训练、模型预测、服务管理等进行管理。只要安装了k8s,可以在本地、机房、云环境中部署。

2 开发工具集

机器学习的目标最终还是为了在生产环境或者业务场景中使用,但这个过程却是很复杂的,需要进行数据加载、切分、预处理、特征工程、模型训练、验证、超参数调优、模型部署等等;为了正常使用模型,还需要在模型上线后,持续不断的输入数据才能得到预测的结果。

人工构建整个过程并进行维护是很复杂的,使用Kubeflow可以节省很多成本。比如在构建模型时,可以选择你喜欢的算法框架进行模型开发,试验阶段可以通过Jupyter进行交互式的编程,基于Pipeline构建整个训练过程的工作流实现各种处理逻辑,基于Katib进行超参数的自动优化;生产环境中,可以使用TFJob等进行分布式训练,基于KFServing等进行在线模型的服务,基于Metadata或TensorBoard进行模型的监控。

3 使用场景

扩展性:Kf基于k8s可以达到可扩展、可移植、分布式ML平台, 通过Kf你可以轻松管理整个AI生命周期,比如在模型部署的时候自动进行扩容、在试验阶段自由创建笔记本。由于底层基于K8s来提供一致性与高可靠,使用者可以更聚焦于上层的算法模型设计,而不用过多的关注底层构建。

迭代性:构建高质量的机器学习模型可能需要快速的迭代,Kf提供友好的UI界面支持快速追踪对比实验结果,你可以很方便的决定哪个模型训练效果更好。Kf内部提供Jupyter笔记本,支持如Tensorflow、Pytorch等流行的深度学习框架。模型训练配置简单,方便进行分布式训练、部署,提升端到端的开发过程。

混合性:机器学习模型的训练可能涉及多个团队、多个集群和云环境的共享,Kf支持主流的云平台,提供各个环境之间的移植性。你可以在本地开发模型、在集群的GPU上进行训练、最后部署到云环境中,快速的开发模式和高效的部署使得整个过程就像单机操作一样。

超参调优:在模型训练中,超参数调优是很关键也很复杂的过程,对模型最终的准确度和性能有很大的影响,手动尝试各种超参数的组合非常浪费时间。Kf通过Katib来支持自动超参数优化,这种自动优化会节省大量的计算时间,提高模型优化的效率。

持续集成:Kf目前并没有这个方面成型的产品,但是可以通过Pipeline组件来实现。Pipeline支持创建可重复的工作流,可以自动触发整个工作流的重跑以及模型的训练。

4 部署

Kubeflow的部署其实很简单,主要是依赖的镜像大多出自Google因此会遇到很多网络问题。解决办法推荐是通过阿里云镜像手动下载docker镜像,然后tag成目标镜像;或者直接修改kustomize中的镜像地址。

安装时需要下载kfctl并按照文档配置环境变量,比如我试过Ubuntu 18,可以参考下面的文档:https://www.kubeflow.org/docs/started/k8s/kfctl-k8s-istio/,大致流程如下:

代码语言:javascript
复制
1 到地址中下载对应的kfctl,darwin为mac,linux为其他,不支持windows
https://github.com/kubeflow/kfctl/releases/tag/v1.0.2

2 压缩包解压缩
tar -xvf kfctl_v1.0.2_<platform>.tar.gz

3 配置环境变量 vi /etc/profile
export PATH=$PATH:"<path-to-kfctl>"
export KF_NAME=<自定义名称>
export BASE_DIR=<path to a base directory>
export KF_DIR=${BASE_DIR}/${KF_NAME}
export CONFIG_URI="https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_k8s_istio.v1.0.2.yaml"

4 更新环境变量
source /etc/profile

5 执行命令
mkdir -p ${KF_DIR}
cd ${KF_DIR}
kfctl apply -V -f ${CONFIG_URI}

6 查看安装服务
kubectl -n kubeflow get all

整个安装过程很缓慢,尤其是前期需要安装cert-manager进行权限控制,需要等服务正常。

中间会有大量的镜像报错ImagePullBackOff,这表示镜像拉取失败。解决办法:

代码语言:javascript
复制
1 查看具体pod的详情
kubectl describe pod admission-webhook-bootstrap-stateful-set-0 -n kubeflow

2 去阿里云镜像站搜索镜像
docker pull registry.cn-hangzhou.aliyuncs.com/pigeonw/ingress-setup

3 重命名
sudo docker tag registry.cn-hangzhou.aliyuncs.com/pigeonw/ingress-setup:latest gcr.io/kubeflow-images-public/ingress-setup:latest

4 修改kustomize中的配置
cd ./kustomize/webhook/base
sudo vim deployment.yaml
修改镜像拉取策略
imagePullPolicy: IfNotPresent
原来如果是Always表示总是会去拉取远程镜像,IfNotPresent表示本地不存在时才会拉取

5 修改完成后等待一会,如果状态还没有变成Running,可以执行
kfctl apply -f kfctlxxx.yaml 重新创建

都部署成功后,大致可以看到如下的运行状态,仅供参考:

5 使用

部署成功后,通过端口映射可以支持在外部访问:

代码语言:javascript
复制
export NAMESPACE=istio-system
kubectl port-forward --address 0.0.0.0 -n ${NAMESPACE} svc/istio-ingressgateway 8080:80

然后访问目标地址即可,如localhost:8080,自定义namespace后可以看到如下画面:

后面将会分享Notebook、Pipeline、Katib等的使用,感谢关注。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-08-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 介绍
  • 2 开发工具集
  • 3 使用场景
  • 4 部署
  • 5 使用
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档