前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Dijkstra算法及其C++实现

Dijkstra算法及其C++实现

作者头像
卡尔曼和玻尔兹曼谁曼
发布2020-08-20 16:39:14
1.2K0
发布2020-08-20 16:39:14
举报
文章被收录于专栏:给永远比拿愉快

Dijkstra算法及其C++实现

什么是最短路径问题

如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。

单源最短路径问题是指对于给定的图

G=(V, E)

,求源点

v_0

到其它顶点

v_t

的最短路径。

Dijkstra算法

Dijkstra算法用于计算一个节点到其他节点的最短路径。Dijkstra是一种按路径长度递增的顺序逐步产生最短路径的方法,是一种贪婪算法。

Dijkstra算法的核心思想是首先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点

v_0

到其它各顶点的最短路径全部求出为止。

具体来说:图中所有顶点分成两组,第一组是已确定最短路径的顶点,初始只包含一个源点,记为集合

S

;第二组是尚未确定最短路径的顶点,记为集合

U

按最短路径长度递增的顺序逐个把

U

中的顶点加到

S

中去,同时动态更新

U

集合中源点到各个顶点的最短距离,直至所有顶点都包括到

S

中。

实现思路

  1. 初始时,
S

集合只包含起点

v_0

U

集合包含除

v_0

外的其他顶点

v_t

,且

U

中顶点的距离为起点

v_0

到该顶点的距离。(

U

中顶点

v_t

的距离为

(v_0, v_t)

的长度,如果

v_0

v_t

不相邻,则

v_t

的最短距离为

\infty

U

中选出距离最短的顶点

v_{t'}

,并将顶点

v_{t'}

加入到

S

中;同时,从

U

中移除顶点

v_{t'}

  1. 更新
U

中各个顶点

v_t

到起点

v_0

的距离以及最短路径中当前顶点的前驱顶点。之所以更新

U

中顶点的距离以及前驱顶点是由于上一步中确定了

v_{t'}

是求出最短路径的顶点,从而可以利用

v_{t'}

来更新

U

中其它顶点

v_t

的距离,因为存在

(v_0, v_t)

的距离可能大于

(v_0, v_{t'}) + (v_{t'}, v_t)

距离的情况,从而也需要更新其前驱顶点

  1. 重复步骤(2)和(3),直到遍历完所有顶点

案例分析

代码实现

使用了部分C++11特性,注释丰富,读起来应该不会太困难!

代码语言:javascript
复制
#include <cstdio>
#include <iostream>
#include <vector>
#include <list>
#include <stack>

using namespace std;
using Matrix = vector<vector<uint>>;                // 连接矩阵(使用嵌套的vector表示)
using SNodes = vector<tuple<uint, uint, uint>>;     // 已计算出最短路径的顶点集合S(类似一个动态数组)
using UNodes = list<tuple<uint, uint, uint>>;       // 未进行遍历的顶点集合U(使用list主要是方便元素删除操作)
using ENode = tuple<uint, uint, uint>;              // 每个节点包含(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)信息


/***
 * 从未遍历的U顶点集合中找到下一个离起始顶点距离最短的顶点
 * @param unvisitedNodes 未遍历的U顶点集合
 * 每个元素是(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)的tuple
 * @return 下一个离起始顶点距离最短的顶点
 */
ENode searchNearest(const UNodes &unvisitedNodes) {
    uint minDistance = UINT_MAX;
    ENode nearest;
    for (const auto &node: unvisitedNodes) {
        if (get<1>(node) <= minDistance) {
            minDistance = get<1>(node);
            nearest = node;
        }
    }
    return nearest;
}


/***
 * 迪克斯特拉算法的实现
 * @param graph 连接矩阵(使用嵌套的vector表示)
 * @param startNodeIndex 起始点编码(从0开始)
 * @return 返回一个vector,每个元素是到起始顶点的距离排列的包含(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)的tuple
 */
SNodes dijkstra(const Matrix &graph, uint startNodeIndex) {
    const uint numOfNodes = graph.size();   // 图中顶点的个数
    // S是已计算出最短路径的顶点的集合(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)
    SNodes visitedNodes;
    // U是未计算出最短路径的顶点的集合(其中的key为顶点编号,value为到起始顶点最短距离和最短路径中上一个节点编号组成的pair)
    UNodes unvisitedNodes;

    // 对S和U集合进行初始化,起始顶点的距离为0,其他顶点的距离为无穷大
    // 最短路径中当前顶点的上一个顶点初始化为起始顶点,后面会逐步进行修正
    for (auto i = 0; i < numOfNodes; ++i) {
        if (i == startNodeIndex) visitedNodes.emplace_back(i, 0, startNodeIndex);
        else unvisitedNodes.emplace_back(i, graph[startNodeIndex][i], startNodeIndex);
    }

    while (!unvisitedNodes.empty()) {
        // 从U中找到距离起始顶点距离最短的顶点,加入S,同时从U中删除
        auto nextNode = searchNearest(unvisitedNodes);
        unvisitedNodes.erase(find(unvisitedNodes.begin(), unvisitedNodes.end(), nextNode));
        visitedNodes.emplace_back(nextNode);
        // 更新U集合中各个顶点的最短距离以及最短路径中的上一个顶点
        for (auto &node: unvisitedNodes) {
            // 更新的判断依据就是起始顶点到当前顶点(nextNode)距离加上当前顶点到U集合中顶点的距离小于原来起始顶点到U集合中顶点的距离
            // 更新最短距离的时候同时需要更新最短路径中的上一个顶点为nextNode
            if (graph[get<0>(nextNode)][get<0>(node)] != UINT_MAX &&
                graph[get<0>(nextNode)][get<0>(node)] + get<1>(nextNode) < get<1>(node)) {
                get<1>(node) = graph[get<0>(nextNode)][get<0>(node)] + get<1>(nextNode);
                get<2>(node) = get<0>(nextNode);
            }
        }
    }

    return visitedNodes;
}


/***
 * 对使用迪克斯特拉算法求解的最短路径进行打印输出
 * @param paths vector表示的最短路径集合
 * 每个元素是到起始顶点的距离排列的包含(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)的tuple
 */
void print(const SNodes &paths) {
    stack<int> tracks;  //从尾部出发,使用stack将每个顶点的最短路径中的前一个顶点入栈,然后出栈的顺序就是最短路径顺序
    // 第一个元素是起始点,从第二个元素进行打印输出
    for (auto it = ++paths.begin(); it != paths.end(); ++it) {
        // 打印头部信息
        printf("%c -> %c:\t Length: %d\t Paths: %c",
               char(get<0>(paths[0]) + 65),
               char(get<0>(*it) + 65),
               get<1>(*it),
               char(get<0>(paths[0]) + 65));
        auto pointer = *it;
        // 如果当前指针pointer指向的节点有中途节点(判断的条件是最短路径中的前一个节点不是起始点)
        while (get<2>(pointer) != get<0>(paths[0])) {
            tracks.push(get<0>(pointer));
            // Lambda表达式,使用find_if函数把当前顶点的前一个顶点从paths中找出来继续进行循环直到前一个节点就是起始点
            auto condition = [pointer](tuple<uint, uint, uint> x) { return get<0>(x) == get<2>(pointer); };
            pointer = *find_if(paths.begin(), paths.end(), condition);
        }
        tracks.push(get<0>(pointer));

        // 以出栈的顺序进行打印输出
        while (!tracks.empty()) {
            printf(" -> %c", char(tracks.top() + 65));
            tracks.pop();
        }
        printf("\n");
    }
}

int main() {
    Matrix graph = {
            {0,        12,       UINT_MAX, UINT_MAX, UINT_MAX, 16, 14},
            {12,       0,        10,       UINT_MAX, UINT_MAX, 7, UINT_MAX},
            {UINT_MAX, 10,       0, 3,               5,        6, UINT_MAX},
            {UINT_MAX, UINT_MAX, 3, 0,               4, UINT_MAX, UINT_MAX},
            {UINT_MAX, UINT_MAX, 5, 4,               0,        2,  8},
            {16,       7,        6,        UINT_MAX, 2,        9,  9},
            {14,       UINT_MAX, UINT_MAX, UINT_MAX, 8,        9,  0}
    };  // 图对应的连接矩阵
    auto results = dijkstra(graph, uint('D' - 65));          // 选取顶点C(大写字母A的ASCII编码是65)
    print(results);     // 打印输出结果
    return 0;
}

运行结果:

代码语言:javascript
复制
D -> C:	 Length: 3	 Paths: D -> C
D -> E:	 Length: 4	 Paths: D -> E
D -> F:	 Length: 6	 Paths: D -> E -> F
D -> G:	 Length: 12	 Paths: D -> E -> G
D -> B:	 Length: 13	 Paths: D -> C -> B
D -> A:	 Length: 22	 Paths: D -> E -> F -> A

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/08/19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Dijkstra算法及其C++实现
    • 什么是最短路径问题
      • Dijkstra算法
        • 实现思路
          • 案例分析
            • 代码实现
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档