前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >AGI智能新时代,大模型为软件开发带来范式变革

AGI智能新时代,大模型为软件开发带来范式变革

作者头像
TVP官方团队
发布于 2023-12-30 03:11:29
发布于 2023-12-30 03:11:29
6470
举报
文章被收录于专栏:腾讯云TVP腾讯云TVP

导语 | 人工智能作为新一轮科技革命和产业变革的重要驱动力量,尤其是在当下新一轮 AI 大模型、生成式 AI 浪潮背景下,重视通用人工智能(AGI)成为行业的共识。在当前, AGI 技术背后的逻辑究竟是怎样的?技术创新的过程中又带来了哪些变革?今天,我们特邀了 Boolan ⾸席技术专家、全球机器学习技术⼤会主席、腾讯云TVP 李建忠老师,他将为我们带来关于 AGI 时代的技术创新范式与思考。

作者简介

李建忠,腾讯云 TVP,Boolan ⾸席技术专家,全球机器学习技术⼤会主席。对软件架构、产品创新、人工智能有丰富经验和深入研究。近年来主要研究以⼤语⾔模型为主的⼈⼯智能⽅法在软件领域的应用,相关研究和演讲引起业界强烈关注。曾于 2005 年- 2010 年期间担任微软最有价值技术专家,区域技术总监。拥有近⼆⼗年软件技术架构与产品经验,主讲多门技术课程,为包括众多世界 500 强公司在内的知名品牌提供⾼端 IT 技术咨询,影响近百万软件开发⼈员。

一、从产业迈进看AGI的发展

首先,从产业的角度来看,回顾技术的发展历程,我们会发现其脉络十分明晰,连接和计算都经历了从 1.0 到 2.0 的革命性变化。1840-1940 年的这 100 年间是连接的 1.0 阶段,这其中主要以电报、电话、广播和电视的相继诞生为标志,它们作为最早的连接技术,在互联网之前对人类社会的整个生态产生了巨大的影响。随着 1946 年第一代计算机的出现,而后大型机、小型机、微型机以及 PC 的问世,在这 50 年时间里技术逐渐从连接的 1.0 转变为计算的 1.0 时代。直到 1995 互联网出现后,Web2.0、移动互联网、云服务技术等推动着我们进入了连接的 2.0 时代,相较于 1.0 时代,主要在于连接从单向走向了双向。再到 2017 年 Transformer 结构的出现,ChatGPT1.0 的迭代使我们进入了计算 2.0 时代,目前这个时代仍将继续,按照过往技术发展曲线,我们可以预测将会持续到 2035 年左右。

其实,未来学家库兹韦尔曾在一本书中预测,人类社会所谓的计算机大概在 2040-2050 年期间将会全面超过人类。这在技术的发展过程中,将呈现出一种连接和计算的“钟摆”状态。连接解决的是生产关系,而计算解决的是生产力问题。连接模式的逻辑是提供信息以供用户决策,是广告天然的土壤,所以互联网最大的商业模式就是广告行业;而计算模式的逻辑是要用户向机器提供数据来帮助决策,其商业模式更趋向收费,典型例子便是 ChatGPT 爆火后各家开始进入付费使用。毋庸置疑,这是在计算逻辑下,效率优先,结果至上的结果。

在计算逻辑中,计算 1.0 作为写软件的时代,一边是生物神经网络,另一边则是数字逻辑电路,在这其中,我们需要把人类的自然需求转化成结构化的东西,让人来适应机器,所以这并不自然,而且在很多的问题上较为麻烦。而进入计算 2.0 时代,尽管伊利亚坚信目前以大模型的深度神经网络和我们人类大脑的生物神经网络在数学原理已几乎一致,但是由于两者生物学原理并不相同,存在碳基和硅基的区别,因此两个神经网络之间的对话非常自然,但还不够流畅,仍有许多工程技术问题亟待完善,包括数据训练部分,我们需要让机器来适应人的思维。

上图生动形象地说明了计算 1.0 和计算 2.0 计算方式的不同特点。当在数字 1.0 计算中,它是确定性的,只要条件相同,输入(X)相同,输出(Y)一定是相同的。然而,在数字 2.0 的神经网络计算中,它采用自然语言输入,并产生多个输出(Y1、Y2、Y3等),这种计算具有概率性,因此使用大型模型时无法确定要得到的是确定性的结果。同样的人在不同的时间可能会说出不同的话,因此也不能要求数字神经网络给出确定性的结果,这是数字 2.0 的显著特点。

在互联网行业,最早是由王兴在 2010 年提出了“四纵三横”理论,其中的三横指搜索、社交和移动。四纵则是最主要的需求类别包括信息、沟通、娱乐和商业。我们将这四个需求与三个横向进行二维匹配,便会发现中国和美国的许多互联网公司都处在这个二维平面上。我们应该关注那些空白的区域,在这个二维平面上创业。这个理论在当时似乎很正确,但是发展至今,这个理论存在一些问题,比如将社交和移动并列。在我看来,社交是一种需求而非一项技术,社交和移动不在同一个维度上。同时,搜索也是一种需求,而不仅仅只是技术。

在此基础上,我认为范式转换的“立方体”模型可以有效呈现当前的生态,在该模型中 X 轴代表人类需求,如信息、娱乐、搜索、社交、商业;Y 轴则代表技术平台,即连接 1.0、计算 1.0、连接 2.0、计算 2.0;Z 轴代表媒介交互,如文字、图片、音频、视频、三维等。我认为需求和技术的交叉点是创新的关键,同时强调媒介的变化对于产品和创新的影响。在智能时代,填充不同象限代表对应不同方向,比如大模型与不同领域结合,为其创新和产品发展提供新的思路。

二、大模型为软件开发带来巨大创新

在我看来,大模型主要具备以下四大核心能力:

  • 生成模型:是其最成熟和最强大的部分,能够生成各种内容;
  • 知识抽象:压缩人类知识,为知识密集型行业带来革新;
  • 语言交互:是人机对话的核心,有巨大的想象空间;
  • 逻辑推理:具备逻辑、规划、记忆能力,成为具身智能。

而以大模型核心能力为支点与不同领域结合会带来怎样的创新机会?我认为,以大模型应用层为切入点主要有 AI-Native 和 AI-Copilot 两个主要方向。AI-Native 是指完全融入 AI 的新型产品或服务,即高风险高回报。AI-Copilot 则是以渐进增强的方式,将 AI 能力嵌入现有的商业闭环中,并与现有的基础设施兼容和扩展。

在移动互联网时代,To C(面向消费者)指的是内容大于服务大于工具。如果在 AI 大模型领域从事工具开发,刚开始火爆并不代表就能得意忘形。此前很火爆的一些工具公司,如电脑清理软件等便是典型例子,今天早已悄无声息。这主要是因为它们竞争壁垒很低,容易被平台厂商挤压,用户切换成本也非常低。然而,今天互联网领域的社交媒体软件却经营得很好,这主要得益于内容大于服务,大于工具。因此,工具的价值是相对较低的。

因此,我们需要思考如何建立起强大的竞争壁垒,要么向服务化方向发展,要么向内容化方向发展。依赖工具取胜只能获得短期效益,不断打造优质内容提升用户粘性才是本质所在。然而,对于 To B(面向企业)则是另一路径,我们可以建立起强大的价值链条,决策大于效率大于内容。在 To B 领域,强调内容的优势是不够的,更多的是需要强调效率的优势。

同样,我们在软件领域也有十分重要的研究方向,大模型的发展也为软件开发带来了三大范式的转换:

  • 开发范式:大模型将改变代码编写方式,从工程师写代码为主到 AIGC 生成代码为主,严肃的程序语言编程仍有它的空间,但它的占比显然会越来越少。这将带来一系列软件开发工具链和技能的大转移;
  • 交互范式:从图形交互界面(GUI)转为自然语言交互界面(NUI),包括 NUI+GUI 协同、渠道结构化输入中间环节的变革,以及拆除孤立应用间的壁垒,使用自然语言来实现应用和服务的无缝集成;
  • 交付范式:由于自然语言编程的低门槛,未来的软件将支持用户使用大模型,自主在现有软件基础上实现灵活扩展的“可塑软件”。从调用API到定制GUI,灵活定制功能、界面、服务,实现软件应用的“千人千面”。从标准固态软件,逐步演化为用户共创的“可塑软件”。最近 OpenAI 发布的 GPT Store 就展现了这方面。这块想象空间非常大,它会重塑软件的整个生态。

我坚信,在未来的三到五年内,整个 AGI 产业的成熟度将达到一个新的高度,国内外都将迎来巨大的创新机会。

欢迎关注「腾讯云TVP」,期待你的「在看」~👇

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-11-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯云TVP 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【ES三周年】elasticsearch 认知
传统的关系数据库(MySQL、Oracle、和Access等)主导了20世纪的数据存储模式,但当数据量达到太字节级,甚至拍字节级时,关系型数据库表现出了难以解决的瓶颈问题。为了解决海量数据存储和分布式计算问题,Google Tab 提出了Map/Reduce 和Google File System(GFS)解决方案,Hadoop作为其中一个优秀的实现框架迅速得到了业界的认可和广泛应用。但Hadoop的存储模式决定了其并不支持对数据的实时检索和计算。还有其他的替代方案吗?为何不尝试Elasticsearch 的分布时存储功能?
张同学tty
2023/04/09
1.3K0
【ES三周年】elasticsearch 认知
【ES三周年】elasticsearch 核心概念
elasticsearch 是一个近实时的搜索和分析平台,这意味着从索引文档到可搜索文档都会有一段微小的延迟(通常是1s以内)。这种延迟主要是因为 elasticsearch 需要进行数据刷新和索引更新。
张同学tty
2023/04/11
3.3K0
【ES三周年】elasticsearch 核心概念
【ES三周年】高效搜索引擎ElasticSearch介绍
官网:https://www.elastic.co/cn/products/elasticsearch
4O4
2023/02/17
2.4K14
【ES三周年】高效搜索引擎ElasticSearch介绍
【ES三周年】通过Elasticsearch来搭建搜索引擎
Elasticsearch也简称为ES,其实就是一个实时搜索和分析引擎,它可以近乎实时的数据存储、检索与分析数据。ES是一个基于开源的可高扩展的分布式全文搜索引擎,它自身可扩展性非常好,可以扩展到能够处理PB级别的数据。ES是基于Lucene作为核心来实现所有搜索和索引的功能的,之所以这样做就是为了通过简单的RESTful API来隐藏Lucene的复杂性,进而让全文搜索成为一个简单的操作。
三掌柜
2023/02/15
1.5K8
【ES三周年】通过Elasticsearch来搭建搜索引擎
【ES三周年】分布式搜索索引elasticsearch快速入门
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
小小程序员
2023/04/28
1.3K0
【ES三周年】分布式搜索索引elasticsearch快速入门
【ES三周年】腾讯云Elasticsearch Service基础知识,进阶使用以及优化方式
腾讯云 Elasticsearch Service 是一种托管式 Elasticsearch 服务,可用于构建和管理强大的搜索和分析引擎。以下是一份关于如何使用腾讯云 Elasticsearch Service 的技术文章。
堕落飞鸟
2023/03/22
1.5K0
【ES三周年】让搜索更高效:腾讯云和Elasticsearch的完美结合
腾讯云作为国内领先的云计算服务商之一,提供了多种云计算服务,包括计算、存储、数据库、网络、安全、人工智能、大数据、物联网等领域,以满足不同客户的需求。为适应不同的应用场景和需求,其提供的主要功能包括:
江米小枣
2023/02/15
1.6K0
【ES三周年】让搜索更高效:腾讯云和Elasticsearch的完美结合
【ES三周年】分布式搜索索引elasticsearch JavaAPI编写ES搜索
在昨天的学习中,我们已经导入了大量数据到elasticsearch中,实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。
小小程序员
2023/04/28
1.5K0
【ES三周年】分布式搜索索引elasticsearch JavaAPI编写ES搜索
【ES三周年】 ES插件介绍和应用
现在 ElasticSearch 大量应用在搜索领域,开发者可以通过其提供的多样的查询api达到希望的搜索效果,而且Elasticsearch版本也一直在不断迭代,以满足开发者的需要。但是,实际开发过程中,可能需要将搜索和自己的业务场景进行结合,来达到自定义的排序、搜索规则。Elasticsearch针对这种情况,提供了插件的功能,可以这么说,如果能够学会使用插件,那我们就有了自由扩充ELasticsearch功能的手段,对搜索的掌控力就能提升一个档次。
用户5851821
2023/02/06
2.5K0
【ES三周年】+Elasticsearch 在大数据的应用
作为一个开源的分布式全文搜索和分析引擎,Elasticsearch(以下简称ES)已经在不少企业应用中发挥了重要作用。ES最早是由Shay Banon于2010年创建,经过多年的发展,现已成为一个功能丰富、性能优越的大数据搜索引擎。本文将介绍ES的一些关键知识点、技术原理和操作实践,并结合Java代码示例进行讲解,以帮助开发者更好地了解和应用ES。
Maynor
2023/02/14
8070
【ES三周年】+搜索引擎ES的入门教程
全文搜索属于最常见的需求,开源的 Elasticsearch(以下简称 Elastic)是目前全文搜索引擎的首选。
芯动大师
2022/12/14
1.6K1
【ES三周年】+搜索引擎ES的入门教程
【ES三周年】十分钟快速入门Elasticsearch
Elasticsearch 是分布式、可扩展、实时的搜索与数据分析引擎,一般简称ES。
windealli
2023/03/03
2.3K0
【ES三周年】十分钟快速入门Elasticsearch
【ES三周年】ElasticSearch 简要技术总结与Spark结合使用实践
ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。它是一个实时的分布式搜索和分析引擎。它可以帮助你用几秒钟内搜索百万级别的数据。
大鹅
2023/02/14
2K0
【ES三周年】写给ES开发者的Elasticsearch入门指南
首先,来了解一下Elasticsearch,它是一个分布式可扩展高实时的搜索和分析引擎,可以很轻松的让高量级数据具有搜索分析和探寻能力,其自身的水平伸缩性可以让数据在生产环境下具有更高价值。
三掌柜
2023/02/08
1.5K13
【ES三周年】写给ES开发者的Elasticsearch入门指南
使用Elasticsearch进行智能搜索的机器学习
众所周知,机器学习正在改变许多行业。搜索行业也是如此,公司通过手动调整搜索相关性来压榨潜能。成功的搜索组织希望通过“足够好”的手动调整来构建更智能的自学习搜索系统。
大数据弄潮儿
2018/05/25
3.3K0
【ES三周年】ElasticSearch在微信金融领域实践
用户通过微信支付完成交易,商户通过微信支付完成收款后,可能会出于不同目的来查看此前的交易记录,并且查询条件可能会有很大的差异;为了能够满足这里的功能需求,目前选择ElasticSearch作为主要的存储组件以提供诸如搜索等功能。但是有别于业界使用ElasticSearch支持日志分析场景,在支付金融场景下,会对ElasticSearch的安全和可用性提出更高的要求,以便满足当前领域的需求。
HaveTryTwo
2022/12/07
1.2K0
【ES三周年】ElasticSearch在微信金融领域实践
【ES三周年】关于Elasticsearch Service的从零开始介绍!
腾讯云 Elasticsearch Service(ES)是基于开源引擎打造的云端全托管 ELK 服务,集成 X-Pack 特性、独有高性能自研内核、QQ 分词、集群巡检、一键升级等优势能力,引入极致性价比的腾讯自研星星海服务器。助您轻松管理和运维集群,高效构建日志分析、运维监控、信息检索、数据分析等业务。
吃猫的鱼Code
2023/02/14
8800
开源BI工具红黑榜:2025年主流开源BI工具全景对比
现在市场上开源 BI 产品比较多,各个产品的侧重点不同,有的以报表为主、有的以可视化为主、有的以查询分析为主。这里我们选取了一些主流的开源 BI 产品,从产品功能、可视化能力、数据源支持以及使用文档等方面进行对比,希望对你有帮助。
用户11425834
2025/03/25
5620
【ES三周年】ElasticSearch的那些事儿
ES是Elasticsearch的缩写,是一个基于Lucene的开源全文搜索引擎,提供了分布式、多租户、全文搜索、实时数据分析等功能。ES使用Java语言编写,可以通过RESTful API进行访问和操作,具有快速、可扩展、高可用等特点,是当前最受欢迎的搜索和分析引擎之一。
程序那些事儿
2023/03/13
6070
【ES三周年】ElasticSearch的那些事儿
【ES三周年】ElasticSearch中文分词
本文咱们深入一些,详细分析一下Elasticsearch的中文分词,并顺便演示一下对docker安装的Elasticsearch如何支持中文分词的疑问。好了,废话不多说,让我们开始吧!
大王叫我来巡山、
2023/02/21
8810
推荐阅读
相关推荐
【ES三周年】elasticsearch 认知
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档