Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >组合游戏系列4: AlphaGo Zero 强化学习算法原理深度分析

组合游戏系列4: AlphaGo Zero 强化学习算法原理深度分析

作者头像
CreateAMind
发布于 2020-10-22 02:31:49
发布于 2020-10-22 02:31:49
1.8K0
举报
文章被收录于专栏:CreateAMindCreateAMind

AlphaGo Zero是Deepmind 最后一代AI围棋算法,因为已经达到了棋类游戏AI的终极目的:给定任何游戏规则,AI从零出发只通过自我对弈的方式提高,最终可以取得超越任何对手(包括顶级人类棋手和上一代AlphaGo)的能力。换种方式说,当给定足够多的时间和计算资源,可以取得无限逼近游戏真实解的能力。这一篇,我们深入分析AlphaGo Zero的设计理念和关键组件的细节并解释组件之间的关联。下一篇中,我们将在已有的N子棋OpenAI Gym 环境中用Pytorch实现一个简化版的AlphaGo Zero算法。

AlphaGo Zero 综述

AlphaGo Zero 作为Deepmind在围棋领域的最后一代AI Agent,已经可以达到棋类游戏的终极目标:在只给定游戏规则的情况下,AI 棋手从最初始的随机状态开始,通过不断的自我对弈的强化学习来实现超越以往任何人类棋手和上一代Alpha的能力,并且同样的算法和模型应用到了其他棋类也得出相同的效果。这一篇,从原理上来解析AlphaGo Zero的运行方式。

AlphaGo Zero 算法由三种元素构成:强化学习(RL)、深度学习(DL)和蒙特卡洛树搜索(MCTS,Monte Carlo Tree Search)。核心思想是基于神经网络的Policy Iteration强化学习,即最终学的是一个深度学习的policy network,输入是某棋盘局面 s,输出是此局面下可走位的概率分布:

p(a|s)

在第一代AlphaGo算法中,这个初始policy network通过收集专业人类棋手的海量棋局训练得来,再采用传统RL 的Monte Carlo Tree Search Rollout 技术来强化现有的AI对于局面落子(Policy Network)的判断。Monte Carlo Tree Search Rollout 简单说来就是海量棋局模拟,AI Agent在通过现有的Policy Network策略完成一次从某局面节点到最终游戏胜负结束的对弈,这个完整的对弈叫做rollout,又称playout。完成一次rollout之后,通过局面树层层回溯到初始局面节点,并在回溯过程中同步修订所有经过的局面节点的统计指标,修正原先policy network对于落子导致输赢的判断。通过海量并发的棋局模拟来提升基准policy network,即在各种局面下提高好的落子的

p(a_{win}|s)

,降低坏的落子的

p(a_{lose}|s)

举例如下井字棋局面:

局面s基准policy network返回 p(s) 如下

p(a|s) = \begin{align*} \left\lbrace \begin{array}{r@{}l} 0.1, & & a = (0,2) \\ 0.05, & & a = (1,0) \\ 0.5, & & a = (1,1) \\ 0.05, & & a = (1,2)\\ 0.2, & & a = (2,0) \\ 0.05, & & a = (2,1) \\ 0.05, & & a = (2,2) \end{array} \right. \end{align*}

通过海量并发模拟后,修订成如下的action概率分布,然后通过policy iteration迭代新的网络来逼近

p'

就提高了棋力。

p'(a|s) = \begin{align*} \left\lbrace \begin{array}{r@{}l} 0, & & a = (0,2) \\ 0, & & a = (1,0) \\ 0.9, & & a = (1,1) \\ 0, & & a = (1,2)\\ 0, & & a = (2,0) \\ 0, & & a = (2,1) \\ 0.1, & & a = (2,2) \end{array} \right. \end{align*}

蒙特卡洛树搜索(MCTS)概述

Monte Carlo Tree Search 是Monte Carlo 在棋类游戏中的变种,棋类游戏的一大特点是可以用动作(move)联系的决策树来表示,树的节点数量取决于分支的数量和树的深度。MCTS的目的是在树节点非常多的情况下,通过实验模拟(rollout, playout)的方式来收集尽可能多的局面输赢情况,并基于这些统计信息,将搜索资源的重点均衡地放在未被探索的节点和值得探索的节点上,减少在大概率输的节点上的模拟资源投入。传统MCTS有四个过程:Selection, Expansion, Simulation 和Backpropagation。下图是Wikipedia 的例子:

- Selection:从根节点出发,根据现有统计的信息和selection规则,选择子节点递归向下做决定,后面我们会详细介绍AlphaGo的UCB规则。图中节点的数字,例如根节点11/21,分别代表赢的次数和总模拟次数。从根节点一路向下分别选择节点 7/10, 1/6直到叶子节点3/3,叶子节点表示它未被探索过。

- Expansion:由于3/3节点未被探索过,初始化其所有子节点为0/0,图中3/3只有一个子节点。后面我们会看到神经网络在初始化子节点的时候起到的指导作用,即所有子节点初始权重并非相同,而是由神经网络给出估计。

- Simulation:重复selection和expansion,根据游戏规则递归向下直至游戏结束。

- Backpropagation:游戏结束在终点节点产生游戏真实的价值,回溯向上调整所有父节点的统计状态。

权衡 Exploration 和 Exploitation

在不断扩张决策树并收集节点统计信息的同时,MCTS根据规则来权衡探索目的(采样不足)或利用目的来做决策,这个权衡规则叫做Upper Confidence Bound(UCB)。典型的UCB公式如下:w表示通过节点的赢的次数,n表示通过节点的总次数,N是父节点的访问次数,c是调节Exploration 和 Exploitation权重的超参。

{\frac{w_i}{n_i}} + c \sqrt{\frac{\ln N_i}{n_i}}

假设某节点有两个子节点s1, s2,它们的统计指标为 s1: w/n = 3/4,s2: w/n = 6/8,由于两者输赢比率一样,因此根据公式,访问次数少的节点出于Exploration的目的胜出,MCTS最终决定从s局面走向s1。

从第一性原理来理解AlphaGo Zero

前一代的AlphaGo已经战胜了世界冠军,取得了空前的成就,AlphaGo Zero 的设计目标变得更加General,去除围棋相关的处理和知识,用统一的框架和算法来解决棋类问题。

  1. 无人工先验数据 改进之前需要专家棋手对弈数据来冷启动初始棋力
  2. 无特定游戏特征工程 无需围棋特定技巧,只包含下棋规则,可以适用到所有棋类游戏
  3. 单一神经网络 统一Policy Network和Value Network,使用一个共享参数的双头神经网络
  4. 简单树搜索 去除传统MCTS的Rollout 方式,用神经网络来指导MCTS更有效产生搜索策略

搜索空间的两个优化原则

尽管理论上围棋是有解的,即先手必赢、被逼平或必输,通过遍历所有可能局面可以求得解。同理,通过海量模拟所有可能游戏局面,也可以无限逼近所有局面下的真实输赢概率,直至收敛于局面落子的确切最佳结果。但由于围棋棋局的数目远远大于宇宙原子数目,3^361 >> 10^80,因此需要将计算资源有效的去模拟值得探索的局面,例如对于显然的被动局面减小模拟次数,所以如何有效地减小搜索空间是AlphaGo Zero 需要解决的重大问题。David Silver 在Deepmind AlphaZero - Mastering Games Without Human Knowledge 中提到AlphaGo Zero 采用两个原则来有效减小搜索空间。

原则1: 通过Value Network减少搜索的深度

Value Network 通过预测给定局面的value来直接预测最终结果,思想和上一期Minimax DP 策略中直接缓存当前局面的胜负状态一样,减少每次必须靠模拟到最后才能知道当前局面的输赢概率,或者需要多层树搜索才能知道输赢概率。

原则2: 通过Policy Network减少搜索的宽度

搜索广度的减少是由Policy Network预估来达成的,将下一步搜索局限在高概率的动作上,大幅度提升原先MCTS新节点生成后冷启动的搜索宽度。

神经网络结构

AlphaGo Zero 使用一个单一的深度神经网络来完成policy 和value的预测。具体实现方式是将policy network和value network合并成一个共享参数

\theta

的双头网络。其中z是真实游戏结局的效用,范围为[-1, 1] 。

(p, v)=f_{\theta}(s)
p_{a}=\operatorname{Pr}(a \mid s)
v = \mathop{\mathbb{E}}[z|s]
(p, v)=f_{\theta}(s) \\\\ p_{a}=\operatorname{Pr}(a \mid s) \\\\ v = \mathop{\mathbb{E}}[z|s]

Monte Carlo Tree Search (MCTS) 建立了棋局搜索树,节点的初始状态由神经网络输出的p和v值来估计,由此初始的动作策略和价值预判就会建立在高手的水平之上。模拟一局游戏之后向上回溯,会同步更新路径上节点的统计数值并生成更好的MCTS搜索策略

\vec{\pi}

。进一步来看,MCTS和神经网络互相形成了正循环。神经网络指导了未知节点的MCTS初始搜索策略,产生自我对弈游戏结局后,通过减小

\vec{p}

\vec{\pi}

的 Loss ,最终又提高了神经网络对于局面的估计能力。神经网络value network的提升也是通过不断减小网络预测的结果和最终结果的差异来提升。因此,具体神经网络的Loss函数由三部分组成,value network的损失,policy network的损失以及正则项。

l=\sum_{t}\left(v_{\theta}\left(s_{t}\right)-z_{t}\right)^{2}-\vec{\pi}_{t} \cdot \log \left(\vec{p}_{\theta}\left(s_{t}\right)\right) + c {\lVert \theta \rVert}^2

AlphaGo Zero MCTS 具体过程

AlphaGo Plays Games Against ItselfAlphaGo Zero的MCTS和传统MCTS都有相似的四个过程,但AlphaGo Zero的MCTS步骤相对更复杂。首先,除了W/N统计指标之外,AlphaGo Zero的MCTS保存了决策边 a|s 的Q(s,a):Action Value,也就是Q-Learning中的Q值,其初始值由神经网络给出。此外,Q 值也用于串联自底向上更新节点的Value值。具体说来,当某个新节点被Explore后,会将网络给出的Q值向上传递,并逐层更新父节点的Q值。当游戏结局产生时,也会向上更新所有父节点的Q值。此外对于某一游戏局面s进行多次模拟,每次在局面s出发向下探索,每次探索在已知节点按Selection规则深入一步,直至达到未探索的局面或者游戏结束,产生Q值后向上回溯到最初局面s,回溯过程中更新路径上的局面的统计值或者Q值。在多次模拟结束后根据Play的算法,决定局面s的下一步行动。尽管每次模拟探索可能会深入多层,但最终play阶段的算法规则仅决定给定局面s的下一层落子动作。多次向下探索的优势在于:

  1. 探索和采样更多的叶子节点,在更多信息下做决策。
  2. 通过average out多次模拟下一层落子决定,尽可能提升MCTS策略的下一步判断能力,提高
\pi

能力,更有效指导神经网络,提高其学习效率。

New Policy Network V' is Trained to Predict Winner

  1. Selection:

从游戏局面s开始,选择a向下递归,直至未展开的节点(搜索树中的叶子节点)或者游戏结局。具体在局面s下选择a的规则由以下UCB(Upper Confidence Bound)决定

a=\operatorname{argmax}_a(Q(s,a) + u(s,a))

其中,Q(s,a) 和u(s,a) 项分别代表Exploitation 和Exploration。两项相加来均衡Exploitation和Exploration,保证初始时每个节点被explore,在有足够多的信息时逐渐偏向exploitation。

u(s, a)=c_{p u c t} \cdot P(s, a) \cdot \frac{\sqrt{\Sigma_{b} N(s, b)}}{1+N(s, a)}
  1. Expand

当遇到一个未展开的节点(搜索树中的叶子节点)时,对其每个子节点使用现有网络进行预估,即

(p(s), v(s))=f_{\theta}(s)
  1. Backup

当新的叶子节点展开时或者到达终点局面时,向上更新父节点的Q值,具体公式为

Q(s, a)=\frac{1}{N(s, a)} \sum_{s^{\prime} \mid s, a \rightarrow s^{\prime}} V\left(s^{\prime}\right)
  1. Play

多次模拟结束后,使用得到搜索概率分布

\pi_{a}

来确定最终的落子动作。正比于访问次数的某次方

\pi_{a} \propto N(s, a)^{1 / \tau}

,其中

\tau

为温度参数(temperature parameter)。

New Policy Network V' is Trained to Predict Winner

参考资料

  • Youtube, Deepmind AlphaZero - Mastering Games Without Human Knowledge, David Silver
  • Mastering the game of Go with deep neural networks and tree search
  • Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
  • AlphaGo Zero论文解析
  • AlphaZero实战:从零学下五子棋(附代码)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-09-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CreateAMind 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
强化学习(十九) AlphaGo Zero强化学习原理
    在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用。这里我们在前一节MCTS的基础上,讨论下DeepMind的AlphaGo Zero强化学习原理。
刘建平Pinard
2019/04/01
1.6K0
强化学习(十九) AlphaGo Zero强化学习原理
【python】蒙特卡洛树搜索(MCTS)简单实现
选择 Selection:从根节点 R 开始,递归选择最优的子节点(后面会解释)直到达到叶子节点 L。 扩展 Expansion:如果 L 不是一个终止节点(也就是,不会导致博弈游戏终止)那么就创建一个或者更多的字子节点,选择其中一个 C。 模拟 Simulation:从 C 开始运行一个模拟的输出,直到博弈游戏结束。 反向传播 Backpropagation:用模拟的结果输出更新当前行动序列。
全栈程序员站长
2022/07/21
2.7K0
【python】蒙特卡洛树搜索(MCTS)简单实现
组合游戏系列5: 井字棋、五子棋AlphaGo Zero 算法实战
上一篇我们从原理层面解析了AlphaGo Zero如何改进MCTS算法,通过不断自我对弈,最终实现从零棋力开始训练直至能够打败任何高手。在本篇中,我们在已有的N子棋OpenAI Gym 环境中用Pytorch实现一个简化版的AlphaGo Zero算法。本篇所有代码在 github.com/MyEncyclopedia/ConnectNGym 中,其中部分参考了SongXiaoJun 的 github.com junxiaosong/AlphaZero_Gomoku。
AI科技大本营
2020/09/24
1.7K0
组合游戏系列5: 井字棋、五子棋AlphaGo Zero 算法实战
AlphaGo背后的力量:蒙特卡洛树搜索入门指南
选自int8 Blog 机器之心编译 我们都知道 DeepMind 的围棋程序 AlphaGo,以及它超越人类的强大能力,也经常会听到「蒙特卡洛树搜索」这个概念。事实上,蒙特卡洛树搜索是在完美信息博弈场景中进行决策的一种通用技术,除游戏之外,它还在很多现实世界的应用中有着广阔前景。本文中,我们会以 AlphaGo 为例子,对这一方法进行详细介绍。 长久以来,学术世界一直认为计算机在围棋这个复杂游戏上达到超越人类的水平是几乎无法实现的。它被视为人工智能的「圣杯」——一个我们原本希望在未来十年挑战的遥远里程碑。
机器之心
2018/05/08
1.6K0
AlphaGo背后的力量:蒙特卡洛树搜索入门指南
读《Nature》论文,看AlphaGo养成
作者授权转载 作者:龙心尘、寒小阳 ◆ ◆ ◆ 文章声明 博主是围棋小白,下棋规则都记不清楚,也没有设计过棋类AI程序。这篇文章主要是阅读《Nature》论文及关于AlphaGo的相关文章的学习心得。 本文的主要目的是增进分享,交流学习,方便初学者了解AlphaGo中的算法,以及一些机器学习中的常见思路。真正的工程实现过程远比本文介绍得复杂。 本文更多是启发式地进行阐述与分析,包括一些作者结合自己的理解进行的简化处理。文章中不严谨和理解不当之处,欢迎大家批评指出,我们努力修改完善。 ◆ ◆ ◆ 围棋的业
大数据文摘
2018/05/24
7300
【深度】浅述:从 Minimax 到 AlphaZero,完全信息博弈之路(1)
【导读】本文从Minimax算法开始,一直到最新的 AlphaGo Zero 和 AlphaZero,旨在介绍完全信息博弈上人们一路走来得到的算法,以及背后的思路,还将重点介绍 DeepMind Al
WZEARW
2018/04/12
2.6K0
【深度】浅述:从 Minimax 到 AlphaZero,完全信息博弈之路(1)
强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)
    在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna。本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search)。
刘建平Pinard
2019/03/15
1.4K0
AlphaGo对战李世石谁能赢?两万字长文深挖围棋AI技术(二)
上接:AlphaGo对战李世石谁能赢?两万字长文深挖围棋AI技术(一) CNN和Move Prediction 之前我们说了MCTS回避了局面估值的问题,但是人类下围棋显然不是这样的,所以真正要下好围棋,如此从模仿人类的角度来说,这个问题是绕不过去的。人类是怎么学习出不同局面的细微区别的呢?当然不能由人来提取特征或者需要人来编写估值函数,否则还是回到之前的老路上了。我们的机器能自动学习而不需要领域的专家手工编写特征或者规则来实现估值函数呢? 眼下最火热的深度学习也许可以给我们一条路径(当然可能还有其它路径,
用户1737318
2018/06/06
5670
【专栏】谷歌资深工程师深入浅析AlphaGo Zero与深度强化学习
【新智元导读】AlphaGo的巨大成功掀起了围棋界三千年未有之大变局,也使得深度强化学习(Deep Reinforcement Learning)渐为大众熟悉。尤其是最新推出的AlphaGo Zero完全摒弃了人类知识,并且三天内碾压了早期版本的AlphaGo,更足显强化学习和深度学习结合的巨大威力。AlphaGo Zero的论文侧重于描述效果,对于方法的论述比较简短,没有相关背景的人读起来可能会有一些困难。本文对强化学习以及AlphaGo Zero算法做了详细描述。 作者简介:王晶,Google广告大数据
新智元
2018/03/21
1.6K0
【专栏】谷歌资深工程师深入浅析AlphaGo Zero与深度强化学习
深入浅出解读并思考AlphaGo
;其次我们要想一下我们下了某一步之后局面会怎么变化,对方会怎么下,我们又怎么接着对方的棋往下下,我们把这种思考叫做思考的深度
CristianoC
2021/03/11
9060
深入浅出解读并思考AlphaGo
AlphaGo的制胜秘诀:蒙特卡洛树搜索初学者指南
2018 区块链技术及应用峰会(BTA)·中国 倒计时 3 天 2018,想要follow最火的区块链技术?你还差一场严谨纯粹的技术交流会——2018区块链技术及应用峰会(BTA)·中国将于2018年3月30-31日登陆北京喜来登长城饭店。追求专业性?你要的这里全都有:当超强嘉宾阵容遇上业界同好的脑洞大联欢,1+1=无限可能,目前门票预购火热进行中。 活动详情: http://dwz.cn/7FI1Ch 编译 | reason_W 出品 | 人工智能头条(公众号ID:AI_Thinker) 长久以来,计算
用户1737318
2018/06/05
1.4K0
为何谷歌围棋AI AlphaGo可能会把李世石击溃
/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 谷歌DeepMind开发的人工智能围棋程序AlphaGo以5:0的压倒性优势击败了欧洲围棋冠军、专业二段棋手Fan Hui,这是最近一周来最火爆的新闻了。16年3月份AlphaGo会和最近10年平均成绩表现最优秀的韩国九段、世界冠军李世石进行对弈,这无疑也是最吸引眼球的一场人机世纪大战,如果此役
用户1737318
2018/06/06
5470
登顶世界第一! 相比其他AI,AlphaGo究竟有何不同?
世界职业围棋排名网站GoRatings最新排名显示,连续24个月排名世界第一的中国棋手柯洁被谷歌人工智能机器人AlphaGo反超。截止目前,AlphaGo以3612分登顶世界第一,超越了所有人类棋手。
AI科技评论
2018/03/07
1K0
登顶世界第一! 相比其他AI,AlphaGo究竟有何不同?
【重磅】AlphaZero炼成最强通用棋类AI,DeepMind强化学习算法8小时完爆人类棋类游戏
作者:闻菲,刘小芹,常佩琦 【新智元导读】或许“智能爆炸”不会发生,但永远不要低估人工智能的发展。推出最强围棋AI AlphaGo Zero不到50天,DeepMind又一次超越了他们自己,也刷新了世人对人工智能的认知。12月5日,包括David Silver、Demis Hassabis等人在内的DeepMind团队发表论文,提出通用棋类AI AlphaZero,从零开始训练,除了基本规则没有任何其他知识,4小时击败最强国际象棋AI、2小时击败最强将棋AI,8小时击败李世石版AlphaGo,连最强围棋AI
新智元
2018/03/20
1.6K0
【重磅】AlphaZero炼成最强通用棋类AI,DeepMind强化学习算法8小时完爆人类棋类游戏
不只是围棋!AlphaGo Zero之后DeepMind推出泛化强化学习算法AlphaZero
选自arXiv 作者:David Silver等 机器之心编译 在 DeepMind 发表 Nature 论文介绍 AlphaGo Zero 之后,这家公司一直在寻求将这种强大算法泛化到其他任务中的可能性。昨天,AlphaGo 研究团队提出了 AlphaZero:一种可以从零开始,通过自我对弈强化学习在多种任务上达到超越人类水平的新算法。据称,新的算法经过不到 24 小时的训练后,可以在国际象棋和日本将棋上击败目前业内顶尖的计算机程序(这些程序早已超越人类世界冠军水平),也可以轻松击败训练 3 天时间的 A
机器之心
2018/05/09
7580
不只是围棋!AlphaGo Zero之后DeepMind推出泛化强化学习算法AlphaZero
人类太多余?且慢,先听AI科学家详解AlphaGo Zero的伟大与局限
夏乙 李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI “人类太多余了。” 面对无师自通碾压一切前辈的AlphaGo Zero,柯洁说出了这样一句话。 如果你无法理解柯洁的绝望,请先跟着量
量子位
2018/03/23
1K0
AlphaGo的算法等技术分析
最近我仔细看了下AlphaGo在《自然》杂志上发表的文章,写一些分析给大家分享。 AlphaGo这个系统主要由几个部分组成: 1、走棋网络(Policy Network),给定当前局面,预测/采样下一
前朝楚水
2018/04/02
1.5K0
AlphaGo的算法等技术分析
【21天完虐Master】AlphaGo Zero横空出世,DeepMind Nature论文解密不使用人类知识掌握围棋
【新智元导读】新智元AI World 2017世界人工智能大会倒计时进入20天,DeepMind 如约公布了他们最新版AlphaGo论文,也是他们最新的Nature论文,介绍了迄今最强最新的版本AlphaGo Zero,使用纯强化学习,将价值网络和策略网络整合为一个架构,3天训练后就以100比0击败了上一版本的AlphaGo。AlphaGo已经退休,但技术永存。DeepMind已经完成围棋上的概念证明,接下来就是用强化学习创造改变世界的价值。 今年5月乌镇围棋大赛时,DeepMind CEO Hassabi
新智元
2018/03/21
9340
【21天完虐Master】AlphaGo Zero横空出世,DeepMind Nature论文解密不使用人类知识掌握围棋
AlphaGo 是如何把 CNN 接到搜索的?
AlgorithmDog
2018/01/08
2.2K0
AlphaGo 是如何把 CNN 接到搜索的?
李开复、马少平、周志华、田渊栋都是怎么看AlphaGo Zero的?
AI科技评论消息,北京时间10月19日凌晨,Deepmind在Nature上发布论文《Mastering the game of Go without human knowledge》(不使用人类知识掌握围棋),在这篇论文中,Deepmind展示了他们更强大的新版本围棋程序“AlphaGo Zero”,验证了即使在像围棋这样最具挑战性的领域,也可以通过纯强化学习的方法自我完善达到目的。据介绍,AlphaGo Zero仅经过三天训练,就能以100:0击败此前击败李世石的AlphaGo Lee,经过21天训练,
AI科技评论
2018/03/14
7980
李开复、马少平、周志华、田渊栋都是怎么看AlphaGo Zero的?
推荐阅读
相关推荐
强化学习(十九) AlphaGo Zero强化学习原理
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档