前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >实战|手把手教你用Python爬取存储数据,还能自动在Excel中可视化!

实战|手把手教你用Python爬取存储数据,还能自动在Excel中可视化!

作者头像
星星在线
发布2020-11-19 15:19:39
1.7K0
发布2020-11-19 15:19:39
举报
文章被收录于专栏:python爬虫实战之路

大家好,在之前我们讲过如何用Python构建一个带有GUI的爬虫小程序,很多本文将迎合热点,延续上次的NBA爬虫GUI,探讨如何爬取虎扑NBA官网数据。 并且将数据写入Excel中同时自动生成折线图,主要有以下几个步骤

本文将分为以下两个部分进行讲解

  • 在虎扑NBA官网球员页面中进行爬虫,获取球员数据
  • 清洗整理爬取的球员数据,对其进行可视化

项目主要涉及的Python模块:

  • requests
  • pandas
  • bs4

爬虫部分

爬虫部分整理思路如下?

观察URL1的源代码

\Rightarrow

找到球队名称与对应URL2

\Rightarrow

观察URL2的源代码

\Rightarrow

找到球员对应的URL3

\Rightarrow

观察URL3源代码

\Rightarrow

找到对应球员基本信息与比赛数据并进行筛选存储

其实爬虫就是在html上操作,而html的结构很简单就只有一个,就是一个大框讨一个小框,小框在套小框,这样的一层层嵌套。

目标URL如下:

  • URL1:http://nba.hupu.com/players/
  • URL2(此处以湖人球队为例):https://nba.hupu.com/players/lakers
  • URL3(此处以詹姆斯为例):https://nba.hupu.com/players/lebronjames-650.html

先引用模块

代码语言:javascript
复制
from bs4 import BeautifulSoup
import requests
import xlsxwriter
import os

查看URL1源代码代码,可以看到球队名词及其对应的URL2在span标签中<span class><a href = “...">下,进而找到它的父框与祖父框,下面的思路都是如此,图如下:

此时,可以通过requests模块与bs4模块进行有目的性的索引,得到球队的名称列表。

代码语言:javascript
复制
def Teamlists(url):
    TeamName=[] 
    TeamURL=[] 
    GET=requests.get(URL1)
    soup=BeautifulSoup(GET.content,'lxml')
    lables=soup.select('html body div div div ul li span a') 
    for lable in lables:
        ballname=lable.get_text()
        TeamName.append(ballname)
        print(ballname)
    teamname=input("请输入想查询的球队名:")#此处可变为GUI界面中的按键值
    c=TeamName.index(teamname)
    for item in lables:
     HREF=item.get('href')
     TeamURL.append(HREF)
    URL2=TeamURL[c] 
    return URL2

就此得到了对应球队的URL2,接着观察URL2网页的内容,可以看到球员名称在标签a中<a target = "_blank" href = ....>下,同时也存放着对应球员的URL3,如下图:

此时,故依然通过requests模块与bs4模块进行相对应的索引,得到球员名称列表以及对应的URL3。

代码语言:javascript
复制
#自定义函数获取队员列表和对应的URL
def playerlists(URL2):
    PlayerName=[] 
    PlayerURL=[] 
    GET2=requests.get(URL1)
    soup2=BeautifulSoup(GET2.content,'lxml')
    lables2=soup2.select('html body div div table tbody tr td b a')
    for lable2 in lables2:
        playername=lable2.get_text()
        PlayerName.append(playername)
        print(playername)
    name=input("请输入球员名:") #此处可变为GUI界面中的按键值
    d=PlayerName.index(name)
    for item2 in lables2:
     HREF2=item2.get('href')
     PlayerURL.append(HREF2)
    URL3=PlayerURL[d]
    return URL3,name

现在就此得到了对应球队的URL3,接着观察URL3网页的内容,可以看到球员基本信息在标签p下,球员常规赛生涯数据与季后赛生涯数据在标签td下,如下图:

同样,依然通过requests模块与bs4模块进行相对应的索引,得到球员基本信息与生涯数据,而对于球员的常规赛与季候赛的生涯数据将进行筛选与储存,得到data列表。

代码语言:javascript
复制
def Competition(URL3):
    data=[]
    GET3=requests.get(URL3)
    soup3=BeautifulSoup(GET3.content,'lxml')
    lables3=soup3.select('html body div div div div div div div div p')
    lables4=soup3.select('div div table tbody tr td')
    for lable3 in lables3:
     introduction=lable3.get_text() 
     print(introduction)  #球员基本信息
    for lable4 in lables4:
        competition=lable4.get_text()
        data.append(competition) 
    for i in range(len(data)):
        if data[i]=='职业生涯常规赛平均数据':
            a=data[i+31]
            a=data.index(a)
    del(data[:a]) 
    for x in range(len(data)):
        if data[x]=='职业生涯季后赛平均数据':
            b=data[x]
            b=data.index(b)
    del(data[b:])
    return data

通过上述网络爬虫得到了以下的数据,提供可视化数据的同时便于绑定之后的GUI界面按键事件

  • 获取NBA中的所有球队的标准名称;
  • 通过指定的一只球队获取球队中所有球员的标准名称;
  • 通过指定的球员获取到对应的基本信息以及常规赛与季后赛数据;

可视化部分

思路:创建文件夹

\Longrightarrow

创建表格和折线图

自定义函数创建表格,运用os模块进行编写,返回已创文件夹的路径,代码如下:

代码语言:javascript
复制
def file_add(path):  #此时的内函数path可与GUI界面的Statictext绑定
    creatpath=path+'\\Basketball' 
    try:
     if not os.path.isdir(creatpath):
      os.makedirs(creatpath)       
    except:
     print("文件夹存在")
    return creatpath

运用xlsxwriter模块在creatpath路径下自定义函数创建excel表格同时放入数据与构造折线图,代码如下:

代码语言:javascript
复制
def player_chart(name,data,creatpath):
    #此为表格名称——球员名称+chart
    EXCEL=xlsxwriter.Workbook(creatpath+'\\'+name+'chart.xlsx')
    worksheet=EXCEL.add_worksheet(name) 
    bold=EXCEL.add_format({'bold':1}) 
    headings=data[:18]
    worksheet.write_row('A1',headings,bold) #写入表头
    num=(len(data))//18
    a=0
    for i in range(num):
        a=a+18
        c=a+18
        i=i+1
        worksheet.write_row('A'+str(i+1),data[a:c]) #写入数据
    chart_col = EXCEL.add_chart({'type': 'line'}) #创建一个折线图
    chart_col.add_series({
        'name': '='+name+'!$R$1', #设置折线描述名称
        'categories':'='+name+'!$A$2:$A$'+str(num), #设置图表类别标签范围
        'values': '='+name+'!$R$2:$R$'+str(num-1),    #设置图表数据范围
        'line': {'color': 'red'}, })   #设置图表线条属性
    #设置图标的标题和想x,y轴信息
    chart_col.set_title({'name': name+'生涯常规赛平均得分'}) 
    chart_col.set_x_axis({'name': '年份 (年)'}) 
    chart_col.set_y_axis({'name': '平均得分(分)'})
    chart_col.set_style(1) #设置图表风格
    worksheet.insert_chart('A14', chart_col, {'x_offset':25, 'y_offset':3,}) #把图标插入工作台中并设置偏移
    EXCEL.close()

数据表格效果展现,以詹姆斯为例如下

并且此时打开自动生成的Excel,对应的折线图就直接展现出来,无需再次整理!

现在结合任务一的网络爬虫与任务二的数据可视化,可以得到实时的球员常规赛数据与季后赛数据汇总,同时还有实时球员生涯折线图。便可以与上次的GUI界面任务设计中的”可视化“按钮事件绑定,感兴趣的读者可以自己进一步研究!

-END-

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 python爬虫实战之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 BI
腾讯云 BI(Business Intelligence,BI)提供从数据源接入、数据建模到数据可视化分析全流程的BI能力,帮助经营者快速获取决策数据依据。系统采用敏捷自助式设计,使用者仅需通过简单拖拽即可完成原本复杂的报表开发过程,并支持报表的分享、推送等企业协作场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档