# ===================================================
#
#
#
# ===================================================
rm(list=ls())
setwd('D:\\SCIwork\\F24\\OSCC\\DEG')
data <- read.csv('mRNA_exprSet.csv', header = T, row.names = 1)
data[1:4,1:4]
gene <- c('BUB1', 'BUB2', 'BUB3', 'BUB4')
dt <- data[which(rownames(data) %in% gene),]
dt <- as.data.frame(t( dt))
dt <- log2(dt +1)
# ===================================================
metadata <- data.frame(rownames(dt))
for (i in 1:length(metadata[,1])) {
num <- as.numeric(as.character(substring(metadata[i,1],14,15)))
if (num == 1 ) {metadata[i,2] <- "Tumor"}
if (num != 1) {metadata[i,2] <- "Normal"}
}
names(metadata) <- c("id","group")
metadata$group <- as.factor(metadata$group)
table(metadata$group )
dt$id <- rownames(dt)
dt <- merge( metadata, dt, by='id')
# ===================================================
setwd('D:\\SCIwork\\F24\\OSCC\\grade\\TN')
pal <- c('#00A0D2', '#B24646')
for (i in 3:ncol(dt)) {
gene <- as.character(colnames(dt)[i])
p <- ggboxplot(dt, x="group",
y = gene, color = "group",
palette = pal, add = "jitter")
# 添加p值
p <- p + stat_compare_means()
ggsave(filename = paste( gene, '.pdf', sep = ''),
width = 8, height = 8, units = "cm")}
# ===================================================
#
#
#
# ===================================================
library(dplyr)
library(tidyr)
library(tidyverse)
rm(list=ls())
setwd('D:\\SCIwork\\F24\\OSCC\\DEG')
data <- read.csv('tumor_exp.csv', header = T, row.names = 1)
data[1:4,1:4]
gene <- c('BUB1', 'BUB2', 'BUB3', 'BUB4')
dt <- data[which(rownames(data) %in% gene),]
dt <- as.data.frame(t( dt))
dt <- log2(dt +1)
dt$Barcode <- substr(x=rownames(dt),
start = 1, stop = 12)
dt$Barcode <- chartr(old='.', new = '-', x=dt$Barcode)
# ===================================================
sur <- read.csv('survival_OSCC.csv', header = T, row.names = 1)
sur <- sur %>%
select( 'Barcode', "Grade")
dt <- merge(sur, dt, by='Barcode')
dt$Grade <- as.factor(as.character(dt$Grade))
setwd('D:\\SCIwork\\F24\\OSCC\\grade\\grade')
pal <- c('#191970','#87CEFA','#FFA07A', '#B22222')
for (i in 3:ncol(dt)) {
gene <- as.character(colnames(dt)[i])
p <- ggboxplot(dt, x="Grade",
y = gene, color = "Grade",
palette = pal, add = "jitter")
# 添加p值
p <- p + stat_compare_means()
ggsave(filename = paste( gene, '.pdf', sep = ''),
width = 8, height = 8, units = "cm")}