本部分任务主要是将用户输入问答系统的自然语言转化成知识库的查询语句,因此本文将分成两部分进行介绍。
问答系统(Question Answering System,QA System),是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答特朗普是美国总统。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。 截至目前为止,最著名的问答系统应属IBM的沃森系统。该系统在2011年于Jeopardy节目中,与人类同场较劲,并获得最后的胜利。
知识库问答
流水线
query理解是整个搜索系统中最上游的一环,负责的是从query中提取信息,从而了解用户希望通过这个query搜索出什么。 query理解,决定了下游的搜索召回策略。底层数据从技术上,有各种类型的数据库需要检索;从算法策略上,也有多种召回的方案,例如高准确的、高召回的等等,要用什么策略,这要取决于query理解的结论。
要把一个事情说清楚,举例是一个很好的方法。来一个query:唐人街探案
直观的看,这里有一个核心词——唐人街探案,其核心意图就是想看看唐人街探案的相关内容吧,来看看系统内干了些啥:
纠错:初步看来,没有错误,过。 意图识别和实体识别:有唐人街探案这个实体,常见的首先是一部电影,最近还上了网剧,从热度上看,由于网剧比较新,所以用户在近期更可能看的是网剧,当然信息不足,不代表用户真的就只想看网剧,所以电影的东西也要给一些,最大限度保证满足需求。
好了,以百度为例看看结果:
image
前4条,分别给的是百科、爱奇艺网剧、豆瓣电影评论、爱奇艺电影。基本上就覆盖了我上面的分析内容,用户只输入了一个简单的实体,就会给出精准的对应信息,百科了解概况,爱奇艺网剧满足近况,豆瓣电影有影评,最终补充了电影,满足更为全面的请求。
我们来复杂一些,升级为唐人街探案网剧怎么样。
唐人街探案还是一个实体,网剧和电影双意图,但是由于用户输入了网剧,有关电影的内容基本上就可以不出了,最后来了个怎么样,说明用户是更在乎影评,而非要看电视剧了,当然给电视剧了用户不会反感,属于弱意图了。好了,来看百度结果:
image
前5条都围绕着剧评进行,可以说是分析的非常精准了,且前面几条也是比较出名的媒体给出的答案,知乎、新闻、豆瓣、松子电影,第六条很机智的给了爱奇艺的链接了,而且不是展开的,而是一个摘要形式的,大家可以对比一下上一条搜索的结果区别,从这里,大家就能理解,query理解具体做了些什么事情。
那么,要做query,要做什么工作呢。仔细想想,其实主要就是下面几个:
query理解下的所有内容,除了意图识别本身外,其实我都或多或少介绍过。
意图识别简单的理解,其实是一次文本分类,那么文本分类,我们把思路拓展开,其实也是两条路——传统方法和NLP。
其实问题抽象出来,就是个难度高于文本分类的序列标注问题,搜索中的命名实体识别,我聊过的,在这里:
具体思路仍然分为两派,传统方法和NLP。
基于知识图谱的问答系统框架
def build_actree(self, wordlist):
"""
构造actree,加速过滤
:param wordlist:
:return:
"""
actree = ahocorasick.Automaton()
# 向树中添加单词
for index, word in enumerate(wordlist):
actree.add_word(word, (index, word))
actree.make_automaton()
return actree
这一块主要使用了AC自动机字符串匹配算法Aho-Corasick,通俗说就是有个大的列表,客户输入一句话,如何根据客户输入的一句话,从大列表中匹配出字符串交集。 比如我们有一个wordlist列表,长度很长,包含43430个元素: ['长春海外制药接骨续筋片', '香菇炖甲鱼', '三鹤药业黄柏胶囊', '上海衡山熊去氧胆酸片', '升和药业依托泊苷注射液', '怡诺思', '人格障碍', '转铁蛋白饱和度', '脾囊肿', '素烧白萝卜', '利君现代冠脉宁片', '上海复华药业注射用还原型谷', '阴囊上有白色小疙瘩', '腹痛伴休克', '成都通德胰激肽原酶肠溶片', '蒸猪肝', '河北百善血尿胶囊', '精神障碍', '输卵管畸形', '元和抑眩宁胶囊', '莲藕豆腐', '辰欣哈西奈德溶液', '信谊烟酸片', '慢性胆囊炎', '参芪降糖颗粒', '康普药业盐酸普萘洛尔片', '西安迪赛胸腺肽肠溶片', '双鹭药业注射用复合辅酶', '慢性筛窦炎', '新高制药维胺酯维E乳膏', '冰黄肤乐软膏', '神经类疾病', '液晶热图', '枣(干)', '股外侧皮神经病', '浙江惠松硅炭银片', '牙根外露', '湖北潜江氯霉素滴眼液', '盐类皮质激素分泌过多', '五子衍宗丸', '小儿阵发性睡眠性血红蛋白尿症', '功能失调性子宫出血病', '茵栀黄口服液', '眼底出血和渗出', '斯达制药注射用头孢噻肟钠', '复方白芷酊', '胫腓骨骨折', '西南药业氯霉素片', '宫颈炎', '茶碱缓释胶囊', '原发性硬化性胆管炎', '郑州韩都利肺胶囊', '咽反射消失', '脊髓灰质炎', '甲状腺片', '回盲瓣功能不全', '乙肝e抗体(抗...', '马齿苋粥', '动脉硬化', '宝宝乐', '肠闭锁', '肺放线菌病', '江苏晨牌产妇安颗粒', '犬吠样咳嗽', '胃康灵胶囊', '小儿烟酸缺乏病', '青龙防风通圣丸', '广东南国维生素C片', '碘化油咀嚼片', '西乐葆', '伟哥甲磺酸酚妥拉明分散片', '成都迪康药业樟脑醑', '斑疹', '五花炖墨鱼', '肉炖芸豆粉条', '陕西东泰制药益脉康胶囊', '桔梗八味颗粒', '华南牌溴丙胺太林片', '吉林敖东洮南小牛脾提取物注', '仁青芒觉', '血吸虫病与肝胆疾病',...,'持续性枕横位难产', '弯曲菌感染', '丝瓜蘑菇肉片汤', '长春银诺克清咽片', '肝叶萎缩', '迪皿盐酸左西替利嗪口服溶液']
index, (index, word)如下:
0 (0, '长春海外制药接骨续筋片')
1 (1, '香菇炖甲鱼')
2 (2, '三鹤药业黄柏胶囊')
3 (3, '上海衡山熊去氧胆酸片')
4 (4, '升和药业依托泊苷注射液')
5 (5, '怡诺思')
6 (6, '人格障碍')
7 (7, '转铁蛋白饱和度')
8 (8, '脾囊肿')
9 (9, '素烧白萝卜')
10 (10, '利君现代冠脉宁片')
......
43422 (43422, '弯曲菌感染')
43423 (43423, '丝瓜蘑菇肉片汤')
43424 (43424, '长春银诺克清咽片')
43425 (43425, '肝叶萎缩')
43426 (43426, '迪皿盐酸左西替利嗪口服溶液')
43427 (43427, '华润天和麝香壮骨膏')
43428 (43428, '湖北恒安曲咪新乳膏')
43429 (43429, '子宫小')
#############################
import ahocorasick
actree = ahocorasick.Automaton()
for index, word in enumerate(wordlist):
actree.add_word(word, (index, word))
actree.make_automaton()
#其中wordlist就是上面的那个长度为43430的列表
for i in actree.iter('昨天发烧,服用了阿司匹林,并且还吃了牛黄清胃丸,饭是吃了瓜烧白菜,大便有点色浅'):
print(i)
这样客户输入一个字符串,我们能够快速的从之前的列表中匹配出相应的实体元素:
因此我们可以使用AC Tree进行问句过滤,得到匹配的词和类型。如疾病,疾病别名,并发症,症状
def entity_reg(self, question):
"""
模式匹配, 得到匹配的词和类型。如疾病,疾病别名,并发症,症状
:param question:str
:return:
"""
self.result = {}
for i in self.disease_tree.iter(question):
word = i[1][1]
if "Disease" not in self.result:
self.result["Disease"] = [word]
else:
self.result["Disease"].append(word)
for i in self.alias_tree.iter(question):
word = i[1][1]
if "Alias" not in self.result:
self.result["Alias"] = [word]
else:
self.result["Alias"].append(word)
for i in self.symptom_tree.iter(question):
wd = i[1][1]
if "Symptom" not in self.result:
self.result["Symptom"] = [wd]
else:
self.result["Symptom"].append(wd)
for i in self.complication_tree.iter(question):
wd = i[1][1]
if "Complication" not in self.result:
self.result["Complication"] = [wd]
else:
self.result["Complication"] .append(wd)
return self.result
当AC Tree的匹配都没有匹配到实体时,使用查找相似词的方式进行实体匹配
def find_sim_words(self, question):
"""
当全匹配失败时,就采用相似度计算来找相似的词
:param question:
:return:
"""
import re
import string
from gensim.models import KeyedVectors
# 使用结巴加载自定义词典
jieba.load_userdict(self.vocab_path)
# 加载词向量
self.model = KeyedVectors.load_word2vec_format(self.word2vec_path, binary=False)
# 数据预处理,正则去除特殊符号
sentence = re.sub("[{}]", re.escape(string.punctuation), question)
sentence = re.sub("[,。‘’;:?、!【】]", " ", sentence)
sentence = sentence.strip()
# 使用结巴进行分词
words = [w.strip() for w in jieba.cut(sentence) if w.strip() not in self.stopwords and len(w.strip()) >= 2]
alist = []
# 对每个词,都让其与每类实体词典进行相似对比,
# 最终选取分数最高的实体和其属于的实体类型
for word in words:
temp = [self.disease_entities, self.alias_entities, self.symptom_entities, self.complication_entities]
for i in range(len(temp)):
flag = ''
if i == 0:
flag = "Disease"
elif i == 1:
flag = "Alias"
elif i == 2:
flag = "Symptom"
else:
flag = "Complication"
scores = self.simCal(word, temp[i], flag)
alist.extend(scores)
temp1 = sorted(alist, key=lambda k: k[1], reverse=True)
if temp1:
self.result[temp1[0][2]] = [temp1[0][0]]
# 计算词语和字典中的词的相似度
def simCal(self, word, entities, flag):
"""
计算词语和字典中的词的相似度
相同字符的个数/min(|A|,|B|) + 余弦相似度
:param word: str
:param entities:List
:return:
"""
a = len(word)
scores = []
for entity in entities:
sim_num = 0
b = len(entity)
c = len(set(entity+word))
temp = []
for w in word:
if w in entity:
sim_num += 1
if sim_num != 0:
score1 = sim_num / c # overlap score
temp.append(score1)
try:
score2 = self.model.similarity(word, entity) # 余弦相似度分数
temp.append(score2)
except:
pass
score3 = 1 - self.editDistanceDP(word, entity) / (a + b) # 编辑距离分数
if score3:
temp.append(score3)
score = sum(temp) / len(temp)
if score >= 0.7:
scores.append((entity, score, flag))
scores.sort(key=lambda k: k[1], reverse=True)
return scores
该项目通过手工标记210条意图分类训练数据,并采用朴素贝叶斯算法训练得到意图分类模型。其最佳测试效果的F1值达到了96.68%。
# 提取问题的TF-IDF特征
def tfidf_features(self, text, vectorizer):
"""
提取问题的TF-IDF特征
:param text:
:param vectorizer:
:return:
"""
jieba.load_userdict(self.vocab_path)
words = [w.strip() for w in jieba.cut(text) if w.strip() and w.strip() not in self.stopwords]
sents = [' '.join(words)]
tfidf = vectorizer.transform(sents).toarray()
return tfidf
self.symptom_qwds = ['什么症状', '哪些症状', '症状有哪些', '症状是什么', '什么表征', '哪些表征', '表征是什么',
'什么现象', '哪些现象', '现象有哪些', '症候', '什么表现', '哪些表现', '表现有哪些',
'什么行为', '哪些行为', '行为有哪些', '什么状况', '哪些状况', '状况有哪些', '现象是什么',
'表现是什么', '行为是什么'] # 询问症状
self.cureway_qwds = ['药', '药品', '用药', '胶囊', '口服液', '炎片', '吃什么药', '用什么药', '怎么办',
'买什么药', '怎么治疗', '如何医治', '怎么医治', '怎么治', '怎么医', '如何治',
'医治方式', '疗法', '咋治', '咋办', '咋治', '治疗方法'] # 询问治疗方法
self.lasttime_qwds = ['周期', '多久', '多长时间', '多少时间', '几天', '几年', '多少天', '多少小时',
'几个小时', '多少年', '多久能好', '痊愈', '康复'] # 询问治疗周期
self.cureprob_qwds = ['多大概率能治好', '多大几率能治好', '治好希望大么', '几率', '几成', '比例',
'可能性', '能治', '可治', '可以治', '可以医', '能治好吗', '可以治好吗', '会好吗',
'能好吗', '治愈吗'] # 询问治愈率
self.check_qwds = ['检查什么', '检查项目', '哪些检查', '什么检查', '检查哪些', '项目', '检测什么',
'哪些检测', '检测哪些', '化验什么', '哪些化验', '化验哪些', '哪些体检', '怎么查找',
'如何查找', '怎么检查', '如何检查', '怎么检测', '如何检测'] # 询问检查项目
self.belong_qwds = ['属于什么科', '什么科', '科室', '挂什么', '挂哪个', '哪个科', '哪些科'] # 询问科室
self.disase_qwds = ['什么病', '啥病', '得了什么', '得了哪种', '怎么回事', '咋回事', '回事',
'什么情况', '什么问题', '什么毛病', '啥毛病', '哪种病'] # 询问疾病
def other_features(self, text):
"""
提取问题的关键词特征
:param text:
:return:
"""
features = [0] * 7
for d in self.disase_qwds:
if d in text:
features[0] += 1
for s in self.symptom_qwds:
if s in text:
features[1] += 1
for c in self.cureway_qwds:
if c in text:
features[2] += 1
for c in self.check_qwds:
if c in text:
features[3] += 1
for p in self.lasttime_qwds:
if p in text:
features[4] += 1
for r in self.cureprob_qwds:
if r in text:
features[5] += 1
for d in self.belong_qwds:
if d in text:
features[6] += 1
m = max(features)
n = min(features)
normed_features = []
if m == n:
normed_features = features
else:
for i in features:
j = (i - n) / (m - n)
normed_features.append(j)
return np.array(normed_features)
# 项目没有给出训练过程,可参考下面sklearn的例子
from sklearn.naive_bayes import MultinomialNB
mnb = MultinomialNB()
mnb.fit(X_train,y_train)
y_predict = mnb.predict(X_test)
# 意图分类模型文件
self.tfidf_path = os.path.join(cur_dir, 'model/tfidf_model.m')
self.nb_path = os.path.join(cur_dir, 'model/intent_reg_model.m') #朴素贝叶斯模型
self.tfidf_model = joblib.load(self.tfidf_path)
self.nb_model = joblib.load(self.nb_path)
# 意图预测
tfidf_feature = self.tfidf_features(question, self.tfidf_model)
other_feature = self.other_features(question)
m = other_feature.shape
other_feature = np.reshape(other_feature, (1, m[0]))
feature = np.concatenate((tfidf_feature, other_feature), axis=1)
predicted = self.model_predict(feature, self.nb_model)
intentions.append(predicted[0])
# 已知疾病,查询症状
if self.check_words(self.symptom_qwds, question) and ('Disease' in types or 'Alia' in types):
intention = "query_symptom"
if intention not in intentions:
intentions.append(intention)
# 已知疾病或症状,查询治疗方法
if self.check_words(self.cureway_qwds, question) and \
('Disease' in types or 'Symptom' in types or 'Alias' in types or 'Complication' in types):
intention = "query_cureway"
if intention not in intentions:
intentions.append(intention)
# 已知疾病或症状,查询治疗周期
if self.check_words(self.lasttime_qwds, question) and ('Disease' in types or 'Alia' in types):
intention = "query_period"
if intention not in intentions:
intentions.append(intention)
# 已知疾病,查询治愈率
if self.check_words(self.cureprob_qwds, question) and ('Disease' in types or 'Alias' in types):
intention = "query_rate"
if intention not in intentions:
intentions.append(intention)
# 已知疾病,查询检查项目
if self.check_words(self.check_qwds, question) and ('Disease' in types or 'Alias' in types):
intention = "query_checklist"
if intention not in intentions:
intentions.append(intention)
# 查询科室
if self.check_words(self.belong_qwds, question) and \
('Disease' in types or 'Symptom' in types or 'Alias' in types or 'Complication' in types):
intention = "query_department"
if intention not in intentions:
intentions.append(intention)
# 已知症状,查询疾病
if self.check_words(self.disase_qwds, question) and ("Symptom" in types or "Complication" in types):
intention = "query_disease"
if intention not in intentions:
intentions.append(intention)
# 若没有检测到意图,且已知疾病,则返回疾病的描述
if not intentions and ('Disease' in types or 'Alias' in types):
intention = "disease_describe"
if intention not in intentions:
intentions.append(intention)
# 若是疾病和症状同时出现,且出现了查询疾病的特征词,则意图为查询疾病
if self.check_words(self.disase_qwds, question) and ('Disease' in types or 'Alias' in types) \
and ("Symptom" in types or "Complication" in types):
intention = "query_disease"
if intention not in intentions:
intentions.append(intention)
# 若没有识别出实体或意图则调用其它方法
if not intentions or not types:
intention = "QA_matching"
if intention not in intentions:
intentions.append(intention)
self.result["intentions"] = intentions
后续就是通过上述得到的意图信息和实体信息选择对应的模版,并将实体信息填充入组成查询语句进行数据库查询。 参考资料: https://github.com/datawhalechina/team-learning-nlp/blob/master/KnowledgeGraph_Basic/task04.md#%E7%9B%AE%E5%BD%95 https://zhuanlan.zhihu.com/p/136313695 https://zh.wikipedia.org/wiki/%E5%95%8F%E7%AD%94%E7%B3%BB%E7%B5%B1