前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >k8s-client-go源码剖析(二)

k8s-client-go源码剖析(二)

原创
作者头像
用户2672162
修改2021-02-02 18:12:41
4920
修改2021-02-02 18:12:41
举报
文章被收录于专栏:四颗咖啡豆

简介:云原生社区活动---Kubernetes源码剖析第一期第二周

本周是K8S源码研习社第一期第二周,学习内容是学习Informer机制,本文以这个课题进行展开。

本周研习社社长挺忙的,将本次课程推迟到下一周结束,任何事情都是这样,计划总有可能会被其他事情打破,但最终只要能够回归到对应的主线上,就不是什么问题。就像参与开源一样,最开始的开放源代码只是开始,需要的是能够坚持下去,而这一点往往是很重要的。

好了,开始正文。

本文主题:


  1. Informer机制架构设计总览
  2. Reflector理解
  3. DeltaFIFO理解
  4. Indexer理解

如果涉及到资源的内容,本文以Deployment资源进行相关内容讲述。

Informer机制架构设计总览

下面是我根据理解画的一个数据流转图,从全局视角看一下数据的整体走向是怎么样的。

其中虚线的表示的是代码中的方法。

首先讲一个结论:

通过Informer机制获取数据的情况下,在初始化的时候会从Kubernetes API Server获取对应Resource的全部Object,后续只会通过Watch机制接收API Server推送过来的数据,不会再主动从API Server拉取数据,直接使用本地缓存中的数据以减少API Server的压力。

Watch机制基于HTTP的Chunk实现,维护一个长连接,这是一个优化点,减少请求的数据量。第二个优化点是SharedInformer,它可以让同一种资源使用的是同一个Informer,例如v1版本的Deployment和v1beta1版本的Deployment同时存在的时候,共享一个Informer。

上面图中可以看到Informer分为三个部分,可以理解为三大逻辑。

其中Reflector主要是把从API Server数据获取到的数据放到DeltaFIFO队列中,充当生产者角色。

SharedInformer主要是从DeltaFIFIO队列中获取数据并分发数据,充当消费者角色。

最后Indexer是作为本地缓存的存储组件存在。

Reflector理解

Reflector中主要看Run、ListAndWatch、watchHandler三个地方就足够了。

源码位置是 tools/cache/reflector.go

代码语言:javascript
复制
// Ruvn starts a watch and handles watch events. Will restart the watch if it is closed.
// Run will exit when stopCh is closed.
//开始时执行Run,上一层调用的地方是 controller.go中的Run方法
func (r *Reflector) Run(stopCh <-chan struct{}) {
    
    klog.V(3).Infof("Starting reflector %v (%s) from %s", r.expectedTypeName, r.resyncPeriod, r.name)
    wait.Until(func() {
         //启动后执行一次ListAndWatch
        if err := r.ListAndWatch(stopCh); err != nil {
            utilruntime.HandleError(err)
        }
    }, r.period, stopCh)
}

...

// and then use the resource version to watch.
// It returns error if ListAndWatch didn't even try to initialize watch.
func (r *Reflector) ListAndWatch(stopCh <-chan struct{}) error {

// Attempt to gather list in chunks, if supported by listerWatcher, if not, the first
            // list request will return the full response.
            pager := pager.New(pager.SimplePageFunc(func(opts metav1.ListOptions) (runtime.Object, error) {

//这里是调用了各个资源中的ListFunc函数,例如如果v1版本的Deployment
//则调用的是informers/apps/v1/deployment.go中的ListFunc
                             return r.listerWatcher.List(opts)
            }))
            if r.WatchListPageSize != 0 {
                pager.Pa1geSize = r.WatchListPageSize
            }
            // Pager falls back to full list if paginated list calls fail due to an "Expired" error.
            list, err = pager.List(context.Background(), options)
            close(listCh)
...
//这一部分主要是从API SERVER请求一次数据 获取资源的全部Object
if err != nil {
            return fmt.Errorf("%s: Failed to list %v: %v", r.name, r.expectedTypeName, err)
        }
        initTrace.Step("Objects listed")
        listMetaInterface, err := meta.ListAccessor(li
st)
        if err != nil {
            return fmt.Errorf("%s: Unable to understand list result %#v: %v", r.name, list, err)
        }
        resourceVersion = listMetaInterface.GetResourceVersion()
        initTrace.Step("Resource version extracted")
        items, err := meta.ExtractList(list)
        if err != nil {
            return fmt.Errorf("%s: Unable to understand list result %#v (%v)", r.name, list, err)
        }
        initTrace.Step("Objects extracted")
        if err := r.syncWith(items, resourceVersion); err != nil {
            return fmt.Errorf("%s: Unable to sync list result: %v", r.name, err)
        }
        initTrace.Step("SyncWith done")
        r.setLastSyncResourceVersion(resourceVersion)
        initTrace.Step("Resource version updated")
...

//处理Watch中的数据并且将数据放置到DeltaFIFO当中
if err := r.watchHandler(start, w, &resourceVersion, resyncerrc, stopCh); err != nil {
            if err != errorStopRequested {
                switch {
                case apierrs.IsResourceExpired(err):
                    klog.V(4).Infof("%s: watch of %v ended with: %v", r.name, r.expectedTypeName, err)
                default:
                    klog.Warningf("%s: watch of %v ended with: %v", r.name, r.expectedTypeName, err)
                }
            }
            return nil
        }
...
}

数据的生产就结束了,就两点:

  1. 初始化时从API Server请求数据
  2. 监听后续从Watch推送来的数据

DeltaFIFO理解

先看一下数据结构:

代码语言:javascript
复制
type DeltaFIFO struct {
...
    items map[string]Deltas
    queue []string
...
}

type Delta struct {
    Type   DeltaType
    Object interface{}
}

type Deltas []Delta


type DeltaType string

// Change type definition
const (
    Added   DeltaType = "Added"
    Updated DeltaType = "Updated"
    Deleted DeltaType = "Deleted"
    Sync DeltaType = "Sync"
)

其中queue存储的是Object的id,而items存储的是以ObjectID为key的这个Object的事件列表,

可以想象到是这样的一个数据结构,左边是Key,右边是一个数组对象,其中每个元素都是由type和obj组成.

DeltaFIFO顾名思义存放Delta数据的先入先出队列,相当于一个数据的中转站,将数据从一个地方转移另一个地方。

主要看的内容是queueActionLocked、Pop、Resync

queueActionLocked方法:

代码语言:javascript
复制
func (f *DeltaFIFO) queueActionLocked(actionType DeltaType, obj interface{}) error {
...
    newDeltas := append(f.items[id], Delta{actionType, obj})
      //去重处理
    newDeltas = dedupDeltas(newDeltas)

    if len(newDeltas) > 0 {
        ... 
               //pop消息
          
        f.cond.Broadcast()
    ...
    return nil
}

Pop方法:

代码语言:javascript
复制
func (f *DeltaFIFO) Pop(process PopProcessFunc) (interface{}, error) {
    f.lock.Lock()
    defer f.lock.Unlock()
    for {
        for len(f.queue) == 0 {
            //阻塞 直到调用了f.cond.Broadcast()
            f.cond.Wait()
        }
//取出第一个元素
        id := f.queue[0]
        f.queue = f.queue[1:]
        ...
        item, ok := f.items[id]
...
                delete(f.items, id)
        //这个process可以在controller.go中的processLoop()找到
        //初始化是在shared_informer.go的Run
        //最终执行到shared_informer.go的HandleDeltas方法
        err := process(item)
        //如果处理出错了重新放回队列中
        if e, ok := err.(ErrRequeue); ok {
            f.addIfNotPresent(id, item)
            err = e.Err
        }
         ...
    }
}

Resync机制:

小总结:每次从本地缓存Indexer中获取数据重新放到DeltaFIFO中执行任务逻辑。

启动的Resync地方是reflector.go的resyncChan()方法,在reflector.go的ListAndWatch方法中的调用开始定时执行。

代码语言:javascript
复制
go func() {
               //启动定时任务
        resyncCh, cleanup := r.resyncChan()
        defer func() {
            cleanup() // Call the last one written into cleanup
        }()
        for {
            select {
            case <-resyncCh:
            case <-stopCh:
                return
            case <-cancelCh:
                return
            }
                        //定时执行   调用会执行到delta_fifo.go的Resync()方法
            if r.ShouldResync == nil || r.ShouldResync() {
                klog.V(4).Infof("%s: forcing resync", r.name)
                if err := r.store.Resync(); err != nil {
                    resyncerrc <- err
                    return
                }
            }
            cleanup()
            resyncCh, cleanup = r.resyncChan()
        }
    }()

func (f *DeltaFIFO) Resync() error {
    ...
//从缓存中获取到所有的key
    keys := f.knownObjects.ListKeys()
    for _, k := range keys {
        if err := f.syncKeyLocked(k); err != nil {
            return err
        }
    }
    return nil

}


func (f *DeltaFIFO) syncKeyLocked(key string) error {
           //获缓存拿到对应的Object
        obj, exists, err := f.knownObjects.GetByKey(key)
    ...
         //放入到队列中执行任务逻辑
    if err := f.queueActionLocked(Sync, obj); err != nil {
        return fmt.Errorf("couldn't queue object: %v", err)
    }
    return nil
}

SharedInformer消费消息理解

主要看HandleDeltas方法就好,消费消息然后分发数据并且存储数据到缓存的地方

代码语言:javascript
复制
func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error {
    s.blockDeltas.Lock()
    defer s.blockDeltas.Unlock()

    // from oldest to newest
    for _, d := range obj.(Deltas) {
        
        switch d.Type {
        case Sync, Added, Updated:
            ...
            //查一下是否在Indexer缓存中 如果在缓存中就更新缓存中的对象
            if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {
                if err := s.indexer.Update(d.Object); err != nil {
                    return err
                }
                //把数据分发到Listener
                s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)
            } else {
                //没有在Indexer缓存中 把对象插入到缓存中
                if err := s.indexer.Add(d.Object); err != nil {
                    return err
                }
                s.processor.distribute(addNotification{newObj: d.Object}, isSync)
            }
        ...
        }
    }
    return nil
}

Indexer理解

这块不会讲述太多内容,因为我认为Informer机制最主要的还是前面数据的流转,当然这并不代表数据存储不重要,而是先理清楚整体的思路,后续再详细更新存储的部分。

Indexer使用的是threadsafe_store.go中的threadSafeMap存储数据,是一个线程安全并且带有索引功能的map,数据只会存放在内存中,每次涉及操作都会进行加锁。

代码语言:javascript
复制
// threadSafeMap implements ThreadSafeStore
type threadSafeMap struct {
    lock  sync.RWMutex
    items map[string]interface{}
    indexers Indexers
    indices Indices
}

Indexer还有一个索引相关的内容就暂时不展开讲述。

Example代码

代码语言:javascript
复制
-------------

package main

import (
    "flag"
    "fmt"
    "path/filepath"
    "time"

    v1 "k8s.io/api/apps/v1"
    "k8s.io/apimachinery/pkg/labels"
    "k8s.io/client-go/informers"
    "k8s.io/client-go/kubernetes"
    "k8s.io/client-go/rest"
    "k8s.io/client-go/tools/cache"
    "k8s.io/client-go/tools/clientcmd"
    "k8s.io/client-go/util/homedir"
)

func main() {
    var err error
    var config *rest.Config

    var kubeconfig *string

    if home := homedir.HomeDir(); home != "" {
        kubeconfig = flag.String("kubeconfig", filepath.Join(home, ".kube", "config"), "[可选] kubeconfig 绝对路径")
    } else {
        kubeconfig = flag.String("kubeconfig", filepath.Join("/tmp", "config"), "kubeconfig 绝对路径")
    }
    // 初始化 rest.Config 对象
    if config, err = rest.InClusterConfig(); err != nil {
        if config, err = clientcmd.BuildConfigFromFlags("", *kubeconfig); err != nil {
            panic(err.Error())
        }
    }
    // 创建 Clientset 对象
    clientset, err := kubernetes.NewForConfig(config)
    if err != nil {
        panic(err.Error())
    }
    // 初始化一个 SharedInformerFactory 设置resync为60秒一次,会触发UpdateFunc
    informerFactory := informers.NewSharedInformerFactory(clientset, time.Second*60)
    // 对 Deployment 监听
    //这里如果获取v1betav1的deployment的资源
    // informerFactory.Apps().V1beta1().Deployments()
    deployInformer := informerFactory.Apps().V1().Deployments()
    // 创建 Informer(相当于注册到工厂中去,这样下面启动的时候就会去 List & Watch 对应的资源)
    informer := deployInformer.Informer()
    // 创建 deployment的 Lister
    deployLister := deployInformer.Lister()
    // 注册事件处理程序 处理事件数据
    informer.AddEventHandler(cache.ResourceEventHandlerFuncs{
        AddFunc:    onAdd,
        UpdateFunc: onUpdate,
        DeleteFunc: onDelete,
    })

    stopper := make(chan struct{})
    defer close(stopper)

    informerFactory.Start(stopper)
    informerFactory.WaitForCacheSync(stopper)

    // 从本地缓存中获取 default 命名空间中的所有 deployment 列表
    deployments, err := deployLister.Deployments("default").List(labels.Everything())
    if err != nil {
        panic(err)
    }
    for idx, deploy := range deployments {
        fmt.Printf("%d -> %sn", idx+1, deploy.Name)
    }

    <-stopper
}

func onAdd(obj interface{}) {
    deploy := obj.(*v1.Deployment)
    fmt.Println("add a deployment:", deploy.Name)
}

func onUpdate(old, new interface{}) {
    oldDeploy := old.(*v1.Deployment)
    newDeploy := new.(*v1.Deployment)
    fmt.Println("update deployment:", oldDeploy.Name, newDeploy.Name)
}

func onDelete(obj interface{}) {
    deploy := obj.(*v1.Deployment)
    fmt.Println("delete a deployment:", deploy.Name)
} 

以上示例代码中程序启动后会拉取一次Deployment数据,并且拉取数据完成后从本地缓存中List一次default命名空间的Deployment资源并打印,然后每60秒Resync一次Deployment资源。

QA


为什么需要Resync?

在本周有同学提出一个,我看到这个问题后也感觉挺奇怪的,因为Resync是从本地缓存的数据缓存到本地缓存(从开始到结束来说是这样),为什么需要把数据拿出来又走一遍流程呢?当时钻牛角尖也是想不明白,后来换个角度想就知道了。

数据从API Server过来并且经过处理后放到缓存中,但数据并不一定就可以正常处理,也就是说可能报错了,而这个Resync相当于一个重试的机制。

可以尝试实践一下: 部署有状态服务,存储使用LocalPV(也可以换成自己熟悉的),这时候pod会由于存储目录不存在而启动失败. 然后在pod启动失败后再创建好对应的目录,过一会pod就启动成功了。 这是我理解的一种情况。

总结:


Informer机制在K8S中是各个组件通讯的基石,理解透彻是非常有益的,我也还在进一步理解的过程中,欢迎一起交流。

前置阅读:


始发于 四颗咖啡豆,转载请声明出处. 关注公粽号->[四颗咖啡豆] 获取最新内容

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档