先看用例源码:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <uv.h>
uv_loop_t* create_loop()
{
uv_loop_t *loop = malloc(sizeof(uv_loop_t));
if (loop) {
uv_loop_init(loop);
}
return loop;
}
// 收到信号后终止自己所处的handler
void signal_handler(uv_signal_t *handle, int signum)
{
printf("Signal received: %d\n", signum);
uv_signal_stop(handle);
}
// two signal handlers in one loop
// 1个信号 2个handler一起触发
void thread1_worker(void *userp)
{
uv_loop_t *loop1 = create_loop();
uv_signal_t sig1a, sig1b;
uv_signal_init(loop1, &sig1a);
uv_signal_start(&sig1a, signal_handler, SIGUSR1);
uv_signal_init(loop1, &sig1b);
uv_signal_start(&sig1b, signal_handler, SIGUSR1);
uv_run(loop1, UV_RUN_DEFAULT);
}
// two signal handlers, each in its own loop
// 第二个loop结束后继续运行第三个loop 触发2次需要
void thread2_worker(void *userp)
{
uv_loop_t *loop2 = create_loop();
uv_loop_t *loop3 = create_loop();
uv_signal_t sig2;
uv_signal_init(loop2, &sig2);
uv_signal_start(&sig2, signal_handler, SIGUSR1);
uv_signal_t sig3;
uv_signal_init(loop3, &sig3);
uv_signal_start(&sig3, signal_handler, SIGUSR1);
while (uv_run(loop2, UV_RUN_NOWAIT) || uv_run(loop3, UV_RUN_NOWAIT)) {
}
}
int main()
{
printf("PID %d\n", getpid());
uv_thread_t thread1, thread2;
// 创建2个线程去捕获信号处理
uv_thread_create(&thread1, thread1_worker, 0);
uv_thread_create(&thread2, thread2_worker, 0);
// 等待线程结束回收资源
uv_thread_join(&thread1);
uv_thread_join(&thread2);
return 0;
}
看下结构体先:
struct uv_signal_s {
UV_HANDLE_FIELDS
uv_signal_cb signal_cb;
int signum;
UV_SIGNAL_PRIVATE_FIELDS
};
#define UV_SIGNAL_PRIVATE_FIELDS \
/* RB_ENTRY(uv_signal_s) tree_entry; */ \
struct { \
struct uv_signal_s* rbe_left; \
struct uv_signal_s* rbe_right; \
struct uv_signal_s* rbe_parent; \
int rbe_color; \
} tree_entry; \
/* Use two counters here so we don have to fiddle with atomics. */ \
unsigned int caught_signals; \
unsigned int dispatched_signals;
信号handler也是由红黑树组织起来的
int uv_signal_init(uv_loop_t* loop, uv_signal_t* handle) {
int err;
// loop在初始化的时候 已经创建好了信号处理机制
err = uv__signal_loop_once_init(loop);
if (err)
return err;
uv__handle_init(loop, (uv_handle_t*) handle, UV_SIGNAL);
handle->signum = 0;
handle->caught_signals = 0;
handle->dispatched_signals = 0;
return 0;
}
static int uv__signal_loop_once_init(uv_loop_t* loop) {
int err;
/* Return if already initialized. */
if (loop->signal_pipefd[0] != -1)
return 0;
err = uv__make_pipe(loop->signal_pipefd, UV_NONBLOCK_PIPE);
if (err)
return err;
uv__io_init(&loop->signal_io_watcher,
uv__signal_event,
loop->signal_pipefd[0]);
uv__io_start(loop, &loop->signal_io_watcher, POLLIN);
return 0;
}
初始化的过程和loop自带的信号处理handler一样。
主要看下如何激活这个信号handler:
int uv_signal_start(uv_signal_t* handle, uv_signal_cb signal_cb, int signum) {
return uv__signal_start(handle, signal_cb, signum, 0);
}
static int uv__signal_start(uv_signal_t* handle,
uv_signal_cb signal_cb,
int signum,
int oneshot) {
sigset_t saved_sigmask;
int err;
uv_signal_t* first_handle;
assert(!uv__is_closing(handle));
/* If the user supplies signum == 0, then return an error already. If the
* signum is otherwise invalid then uv__signal_register will find out
* eventually.
*/
if (signum == 0)
return UV_EINVAL;
/* Short circuit: if the signal watcher is already watching {signum} don't
* go through the process of deregistering and registering the handler.
* Additionally, this avoids pending signals getting lost in the small
* time frame that handle->signum == 0.
*/
if (signum == handle->signum) {
handle->signal_cb = signal_cb;
return 0;
}
/* If the signal handler was already active, stop it first. */
if (handle->signum != 0) {
uv__signal_stop(handle);
}
// 设置线程的信号掩码
uv__signal_block_and_lock(&saved_sigmask);
/* If at this point there are no active signal watchers for this signum (in
* any of the loops), it's time to try and register a handler for it here.
* Also in case there's only one-shot handlers and a regular handler comes in.
*/
// 在红黑树中查找之前是否已经插入对应信号的handler了
first_handle = uv__signal_first_handle(signum);
if (first_handle == NULL ||
(!oneshot && (first_handle->flags & UV_SIGNAL_ONE_SHOT))) {
// 注册一个新的
err = uv__signal_register_handler(signum, oneshot);
if (err) {
/* Registering the signal handler failed. Must be an invalid signal. */
uv__signal_unlock_and_unblock(&saved_sigmask);
return err;
}
}
handle->signum = signum;
if (oneshot)
handle->flags |= UV_SIGNAL_ONE_SHOT;
// 插入红黑树中
RB_INSERT(uv__signal_tree_s, &uv__signal_tree, handle);
uv__signal_unlock_and_unblock(&saved_sigmask);
handle->signal_cb = signal_cb;
// 激活handle
uv__handle_start(handle);
return 0;
}
仔细看下一些函数:
// 清空掉所谓未读的信号数据
static int uv__signal_lock(void) {
int r;
char data;
do {
r = read(uv__signal_lock_pipefd[0], &data, sizeof data);
} while (r < 0 && errno == EINTR);
return (r < 0) ? -1 : 0;
}
// 填入值 使管道处于可读状态
static int uv__signal_unlock(void) {
int r;
char data = 42;
do {
r = write(uv__signal_lock_pipefd[1], &data, sizeof data);
} while (r < 0 && errno == EINTR);
return (r < 0) ? -1 : 0;
}
// 运行期间忽略所有信号
static void uv__signal_block_and_lock(sigset_t* saved_sigmask) {
sigset_t new_mask;
if (sigfillset(&new_mask))
abort();
/* to shut up valgrind */
sigemptyset(saved_sigmask);
if (pthread_sigmask(SIG_SETMASK, &new_mask, saved_sigmask))
abort();
if (uv__signal_lock())
abort();
}
// 恢复线程之前的信号掩码
static void uv__signal_unlock_and_unblock(sigset_t* saved_sigmask) {
if (uv__signal_unlock())
abort();
if (pthread_sigmask(SIG_SETMASK, saved_sigmask, NULL))
abort();
}
int uv_signal_stop(uv_signal_t* handle) {
assert(!uv__is_closing(handle));
uv__signal_stop(handle);
return 0;
}
static void uv__signal_stop(uv_signal_t* handle) {
uv_signal_t* removed_handle;
sigset_t saved_sigmask;
uv_signal_t* first_handle;
int rem_oneshot;
int first_oneshot;
int ret;
/* If the watcher wasn't started, this is a no-op. */
if (handle->signum == 0)
return;
uv__signal_block_and_lock(&saved_sigmask);
// 从红黑树中移除掉
removed_handle = RB_REMOVE(uv__signal_tree_s, &uv__signal_tree, handle);
assert(removed_handle == handle);
(void) removed_handle;
/* Check if there are other active signal watchers observing this signal. If
* not, unregister the signal handler.
*/
// 信号红黑树对相同信号反复添加的handler是按照一定规则插入的 现在取出之前被删除后再次找到的第一个的
first_handle = uv__signal_first_handle(handle->signum);
if (first_handle == NULL) {
// 如果已经没有对应信号值的handler了 那就注销这个信号
uv__signal_unregister_handler(handle->signum);
} else {
// 如果还有
rem_oneshot = handle->flags & UV_SIGNAL_ONE_SHOT;
first_oneshot = first_handle->flags & UV_SIGNAL_ONE_SHOT;
// 因为不带oneshot插入的时候在带有oneshot的前面
// 所以如果第二次找到的handler带有oneshot 而之前那个不带 说明还不可以马上删除 那就再次注册一次
if (first_oneshot && !rem_oneshot) {
ret = uv__signal_register_handler(handle->signum, 1);
assert(ret == 0);
(void)ret;
}
}
// 恢复掩码和信号管道可读
uv__signal_unlock_and_unblock(&saved_sigmask);
handle->signum = 0;
uv__handle_stop(handle);
}
可以看下红黑树生成的关键比较函数:
static uv_once_t uv__signal_global_init_guard = UV_ONCE_INIT;
static struct uv__signal_tree_s uv__signal_tree =
RB_INITIALIZER(uv__signal_tree);
static int uv__signal_lock_pipefd[2] = { -1, -1 };
RB_GENERATE_STATIC(uv__signal_tree_s,
uv_signal_s, tree_entry,
uv__signal_compare)
static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2) {
int f1;
int f2;
/* Compare signums first so all watchers with the same signnum end up
* adjacent.
*/
// 优先比较信号值
if (w1->signum < w2->signum) return -1;
if (w1->signum > w2->signum) return 1;
/* Handlers without UV_SIGNAL_ONE_SHOT set will come first, so if the first
* handler returned is a one-shot handler, the rest will be too.
*/
// 再比较是否是oneshot 优先处理不带oneshot的
f1 = w1->flags & UV_SIGNAL_ONE_SHOT;
f2 = w2->flags & UV_SIGNAL_ONE_SHOT;
if (f1 < f2) return -1;
if (f1 > f2) return 1;
/* Sort by loop pointer, so we can easily look up the first item after
* { .signum = x, .loop = NULL }.
*/
if (w1->loop < w2->loop) return -1;
if (w1->loop > w2->loop) return 1;
if (w1 < w2) return -1;
if (w1 > w2) return 1;
return 0;
}
// 用红黑树 查找直接找到第一个符合要求的handler
handlerstatic uv_signal_t* uv__signal_first_handle(int signum) {
/* This function must be called with the signal lock held. */
uv_signal_t lookup;
uv_signal_t* handle;
lookup.signum = signum;
lookup.flags = 0;
lookup.loop = NULL;
handle = RB_NFIND(uv__signal_tree_s, &uv__signal_tree, &lookup);
if (handle != NULL && handle->signum == signum)
return handle;
return NULL;
}
// 注册信号对应的处理函数
static int uv__signal_register_handler(int signum, int oneshot) {
/* When this function is called, the signal lock must be held. */
struct sigaction sa;
/* XXX use a separate signal stack? */
memset(&sa, 0, sizeof(sa));
if (sigfillset(&sa.sa_mask))
abort();
sa.sa_handler = uv__signal_handler;
sa.sa_flags = SA_RESTART;
if (oneshot)
sa.sa_flags |= SA_RESETHAND;
/* XXX save old action so we can restore it later on? */
if (sigaction(signum, &sa, NULL))
return UV__ERR(errno);
return 0;
}
// 每个信号都用它来处理
static void uv__signal_handler(int signum) {
uv__signal_msg_t msg;
uv_signal_t* handle;
int saved_errno;
saved_errno = errno;
memset(&msg, 0, sizeof msg);
if (uv__signal_lock()) {
errno = saved_errno;
return;
}
// 找到所有这个信号的handler
for (handle = uv__signal_first_handle(signum);
handle != NULL && handle->signum == signum;
handle = RB_NEXT(uv__signal_tree_s, &uv__signal_tree, handle)) {
int r;
msg.signum = signum;
msg.handle = handle;
/* write() should be atomic for small data chunks, so the entire message
* should be written at once. In theory the pipe could become full, in
* which case the user is out of luck.
*/
do {
// 通知主线程的loop可以处理信号事件了
r = write(handle->loop->signal_pipefd[1], &msg, sizeof msg);
} while (r == -1 && errno == EINTR);
assert(r == sizeof msg ||
(r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)));
if (r != -1)
handle->caught_signals++;
}
uv__signal_unlock();
errno = saved_errno;
}
而epoll捕获到信号管道可读事件的统一处理函数如下:
typedef struct {
uv_signal_t* handle;
int signum;
} uv__signal_msg_t;
static void uv__signal_event(uv_loop_t* loop,
uv__io_t* w,
unsigned int events) {
uv__signal_msg_t* msg;
uv_signal_t* handle;
char buf[sizeof(uv__signal_msg_t) * 32];
size_t bytes, end, i;
int r;
bytes = 0;
end = 0;
do {
// 读取此时触发的信号
r = read(loop->signal_pipefd[0], buf + bytes, sizeof(buf) - bytes);
if (r == -1 && errno == EINTR)
continue;
if (r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
/* If there are bytes in the buffer already (which really is extremely
* unlikely if possible at all) we can't exit the function here. We'll
* spin until more bytes are read instead.
*/
if (bytes > 0)
continue;
/* Otherwise, there was nothing there. */
return;
}
/* Other errors really should never happen. */
if (r == -1)
abort();
bytes += r;
/* `end` is rounded down to a multiple of sizeof(uv__signal_msg_t). */
end = (bytes / sizeof(uv__signal_msg_t)) * sizeof(uv__signal_msg_t);
for (i = 0; i < end; i += sizeof(uv__signal_msg_t)) {
msg = (uv__signal_msg_t*) (buf + i);
handle = msg->handle;
if (msg->signum == handle->signum) {
assert(!(handle->flags & UV_HANDLE_CLOSING));
// 执行用户回调
handle->signal_cb(handle, handle->signum);
}
handle->dispatched_signals++;
if (handle->flags & UV_SIGNAL_ONE_SHOT)
uv__signal_stop(handle);
}
bytes -= end;
/* If there are any "partial" messages left, move them to the start of the
* the buffer, and spin. This should not happen.
*/
if (bytes) {
memmove(buf, buf + end, bytes);
continue;
}
} while (end == sizeof buf);
}
总结:信号处理handler是被插入到红黑树中,按照一定规则排序插入的,信号越小,不带oneshot等规则。信号处理函数统一触发信号管道可读,然后loop从信号io管道可读端读取信号结构体,执行这个信号上的handler的回调。大概主体流程就是这样的。跟我们平常自己写某些信号的handler的方法类似:注册信号和信号函数,触发信号管道可读,主循环捕获io可读事件,根据信号值调用对应回调。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。