前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Jetson Nano Installation

Jetson Nano Installation

原创
作者头像
vanguard
修改2021-04-19 10:52:01
9880
修改2021-04-19 10:52:01
举报
文章被收录于专栏:vanguard

NVIDIA® Jetson Nano™ 开发者套件

Nvidia在边缘计算/Xavier推出的最低配版GPU运算平台

Jetson Nano 开发者套件入门

https://developer.nvidia.com/zh-cn/embedded/learn/get-started-jetson-nano-devkit

官方培训课程(需注册)

https://courses.nvidia.com/courses/course-v1:DLI+S-RX-02+V2/info

包含一个板载内存和处理器核心(带大大的散热器),和一块承载的板

TECHNICAL SPECIFICATIONS

GPU

NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores

CPU

Quad-core ARM Cortex-A57 MPCore processor

Memory

4 GB 64-bit LPDDR4, 1600MHz 25.6 GB/s

Storage

16 GB eMMC 5.1

Video Encode

250MP/sec 1x 4K @ 30 (HEVC) 2x 1080p @ 60 (HEVC) 4x 1080p @ 30 (HEVC) 4x 720p @ 60 (HEVC) 9x 720p @ 30 (HEVC)

Video Decode

500MP/sec 1x 4K @ 60 (HEVC) 2x 4K @ 30 (HEVC) 4x 1080p @ 60 (HEVC) 8x 1080p @ 30 (HEVC) 9x 720p @ 60 (HEVC)

Camera

12 lanes (3x4 or 4x2) MIPI CSI-2 D-PHY 1.1 (1.5 Gb/s per pair)

Connectivity

Gigabit Ethernet, M.2 Key E

Display

HDMI 2.0 and eDP 1.4

USB

4x USB 3.0, USB 2.0 Micro-B

Others

GPIO, I2C, I2S, SPI, UART

Mechanical

69.6 mm x 45 mm 260-pin edge connector

https://developer.nvidia.com/embedded/jetson-nano

Developer kit carrier boards 两个版本,分别支持4GB和2GB内存

1. 硬件准备 - 买买买,注意电源输入,5V3A配合跳线设置,电压太高烧了,电流太低性能不能出来

2. 安装操作系统 - https://developer.nvidia.com/jetson-nano-sd-card-image 用Rufus之类的工具烧录启动盘一样操作就行

3. 升级环境 - 和ubuntu的操作基本一致

代码语言:shell
复制
# 扩容操作 2GB -> 4GB # 参考DLI教程
free -m
sudo systemctl disable nvzramconfig
sudo falcate -l 4G /mnt/4GB.swap
sudo chmod 600 /mnt/4GB.swap
sudo mkswap /mnt/4GB.swap
sudo vi /etc /fstab
# /mnt/4GB.swap swap swap defaults 0 0
sudo reboot
free -m

# Docker安装 # 参考DLI教程
mkdir -p ~/nvdli-data
sudo docker run --runtime nvidia -it --rm --network host \
    --volume ~/nvdli-data:/nvdli-nano/data \
    --device /dev/video0 \
    nvcr.io/nvidia/dli/dli-nano-ai:<tag>
echo "sudo docker run --runtime nvidia -it --rm --network host \
    --volume ~/nvdli-data:/nvdli-nano/data \
    --device /dev/video0 \
    nvcr.io/nvidia/dli/dli-nano-ai:v2.0.1-r32.4.4" > docker_dli_run.sh
chmod +x docker_dli_run.sh
./docker_dli_run.sh
# http://192.168.55.1:8888/ # dlinano

# Python3环境
sudo apt update
sudo apt list full-upgrade
sudo apt install python3
sudo apt install python3-pip
# which python3
ln -s /usr/bin/python3 /usr/bin/python
# pip3 -> pip
pip install --upgrade pip
pip install virtualenv

# Headless 支持远程登陆
sudo apt install net-tools
sudo apt install ssh

sudo apt-get update
sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev \
     zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran

sudo apt-get install python3-pip
sudo pip3 install -U pip testresources setuptools==49.6.0 

sudo pip3 install -U numpy==1.19.4 future==0.18.2 mock==3.0.5 \
     h5py==2.10.0 keras_preprocessing==1.1.1 \
     keras_applications==1.0.8 gast==0.2.2 futures protobuf pybind11

sudo pip3 install --extra-index-url \
     https://developer.download.nvidia.com/compute/redist/jp/v$JP_VERSION tensorflow
sudo apt-get install virtualenv
python3 -m virtualenv -p python3 <chosen_venv_name>

# CUDA
sudo gedit  ~/.bashrc
export CUBA_HOME=/usr/local/cuda-10.2
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-10.2/bin:$PATH
source ~/.bashrc

# Jetson Nano 开发者套件入门

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

# TensorFlow Installation for Jetson Platform

https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html

# Camera

https://cloud.tencent.com/developer/article/1421907

# Getting Started

https://developer.nvidia.com/embedded/learn/getting-started-jetson#tutorials

# Run Tensorflow models on the Jetson Nano with TensorRT

https://gilberttanner.com/blog/run-tensorflow-on-the-jetson-nano

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • TECHNICAL SPECIFICATIONS
相关产品与服务
访问管理
访问管理(Cloud Access Management,CAM)可以帮助您安全、便捷地管理对腾讯云服务和资源的访问。您可以使用CAM创建子用户、用户组和角色,并通过策略控制其访问范围。CAM支持用户和角色SSO能力,您可以根据具体管理场景针对性设置企业内用户和腾讯云的互通能力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档