前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need ?

谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need ?

作者头像
AI算法修炼营
发布2021-05-11 15:10:17
8530
发布2021-05-11 15:10:17
举报
文章被收录于专栏:AI算法修炼营AI算法修炼营

作者 | 耳洞打三金、琰琰

转载自AI科技评论

近日,谷歌大脑团队新出了一篇论文,题目为《MLP-Mixer: An all-MLP Architecture for Vision 》,这篇论文是原视觉Transformer(ViT)团队的一个纯MLP架构的尝试。

本文总结来说就是提出了一种仅仅需要多层感知机的框架——MLP-Mixer,无需卷积模块、注意力机制,即可达到与CNN、Transformer相媲美的图像分类性能。

下面是论文和链接:

论文链接:https://arxiv.org/pdf/2105.01601.pdf

近一年来,Transformer可真是太火了,把Transformer用在视觉领域真是屡试不爽,先是分类后是检测,等等等等,每次都是吊打ResNet,对CV任务“降维打击”,说句实话,每次Transformer在CV领域新的论文出来,别说是对AI从业者,哪怕是对刚刚小学毕业的三金我,对神经来说都是一种挑战:这咋又双叒叕超越了?

众所周知,CV领域主流架构的演变过程是 MLP->CNN->Transformer 。

难道现在要变成 MLP->CNN->Transformer->MLP ?

都说时尚是个圈,没想到你学术圈真的有一天也变成了学术“圈”。

那就先来看一下MLP-Mixer这个新框架吧,它不使用卷积或自注意力机制。相反,Mixer体系架构完全基于在空间位置或特征通道上重复应用的多层感知器(MLP),它只依赖基础的矩阵乘法操作、数据排布变换(比如reshape、transposition)以及非线性层。

下图展示了MLP-Mixer的整体结构:

首先,它的输入是一系列图像块的线性投影(其形状为patches x channels),其次,Mixer使用两种类型的MLP层:

1、通道混合MLP(channel-mixing MLPs ):用于不同通道之间进行通信,允许对每个token独立操作,即采用每一行作为输入。

2、token混合MLP(The token-mixing MLPs ):用于不同空间位置(token)之间的通信;允许在每个通道上独立操作,即采用每一列作为输入。

以上两种类型的MLP层交替执行以实现两个输入维度的交互。

在极端情况下,MLP-Mixer架构可以看作一个特殊的CNN,它使用1×1通道混合的卷积,全感受域的单通道深度卷积以及token混合的参数共享。典型的CNN不是混合器的特例,卷积也比MLPs中的普通矩阵乘法更复杂(它需要额外的成本来减少矩阵乘法或专门实现)不过,尽管它很简单,MLP-Mixer还是取得了很不错的结果。

当对大型数据集进行预训练时(大约100万张图片),它达到了之前CNNs和Transformers在ImageNet上的最佳性能:87.94%的 top-1 验证准确率。当对1-10万张图片大小的数据集进行预训练时,结合现代正则化技术( regularization techniques),Mixer同样取得了强大的性能。

1 Mixer 混合器架构

一般来讲,当今深度视觉体系结构采用三种方式进行特征混合:

(i)在给定的空间位置;

(ii)不同的空间位置之间;

(iii)将上述两种方式组合。

在CNNs中,(ii)是采用N× N进行卷积和池化,其中N>1;(i)采用1×1卷积;较大的核则同时执行(i)和(ii)。通常更深层次的神经元有更大的感受野。

在Transformer和其他注意力架构中,自注意力层允许同时执行(i)和(ii),而MLP只执行(i)。Mixer架构背后的思想是:通过MLP实现每个通道混合操作(i)和 token混合操作(ii)的显著分离。

在上图体系架构中,Mixer将序列长度为S的非重叠的图像块作为输入,每个图像块都投影到所需的隐层维度C,并产生一个二维实值输入X∈ RS×C。如果原始图像的分辨率为(H x W),每个图像块的分辨率为(P x P),那么图像块的数量则为S=HW/P2。所有的块都采用相同的投影矩阵进行线性投影。

Mixer由等尺寸的多层组成,每层有两个MLP块。第一个是token mixing MLP块:它作用于X的列,从RS映射到R S,可在所有列中共享。第二个是Channel-mixing MLP块:它作用于X的行,从Rc映射到 R C,可在所有行中共享。每个MLP块包含两个全连接层和一个独立于输入的非线性层。其基本方程如下:

图中,Ds Dc分别代表token-mixing与channel-mixing MLP中隐层宽度。由于Ds的选择独立于输入图像块的数量,因此,网络的计算复杂度与输入块的数量成线性关系;此外,Dc独立于块尺寸,整体计算量与图像的像素数成线性关系,这类似于CNN。

如上文所说,相同的通道混合MLP(或令牌混合MLP)应用于X的每一行和列,在每一层内绑定通道混合MLP的参数都是一种自然选择,它提供了位置不变性,这是卷积的一个显著特征。

不过,跨通道绑定参数的情况在CNN中并不常见。例如CNN中可分离卷积,将不同的卷积核独立应用于每个通道。而Mixer中的token 混合MLP可以对所有通道共享相同的核(即获得完全感受野)。通常来讲,当增加隐层维数C或序列长度S时,这种参数绑定可以避免体系架构增长过快,并且节省内存。令人没想到的是,这种绑定机制并没有影响性能。

Mixer中的每个层(除了初始块投影层)接收相同大小的输入。这种“各向同性”设计最类似于使用固定宽度的Transformer和RNN。这与大多数CNN不同,CNN具有金字塔结构:越深的层具有更低的分辨率,更多的通道。需要注意的是,以上是典型的设计,除此之外也存在其他组合,例如各向同性网状结构和金字塔状VIT。除了MLP层之外,Mixer还使用了其他标准的体系结构组件:Skip 连接和层规范化。

此外,与ViTs不同,Mixer不使用位置嵌入,因为token混合mlp对输入token的顺序敏感,因此可以学习表示位置。最后,Mixer使用一个标准的分类head和一个线性分类器。

2 更多实验结果和代码

下图是原论文附带的代码,很简单,只有43行。

3 网友评价

知乎网友@小小将 表示:

FC is all you need, neither Conv nor Attention. 在数据和资源足够的情况下,或许inductive bias的模型反而成了束缚,还不如最simple的模型来的直接。

知乎网友@小赖sqLai 表示:

说白了就是patch内和patch间依次进行信息交换和整合,相比transformer其实缺了个动态的结构,也就是内容不可感知,有点过拟合的意思在里面。主观感觉,如果再补个patch内的attention和patch间的attention进去,差不多就能接近transformer了。

知乎网友@TniL 表示:

观察到两个趋势,不敢说是好还是坏: 1、以前的工作都努力在通用模型里加归纳偏置,用来减少参数优化需要的资源(数据、计算资源);近期的(一批)工作在反其道行之,逐渐去先验化,让这部分bias通过大量数据学习出来。 2、以前的模型都讲究兼容变长数据,CNN、RNN、Xformer都有处理变长数据的能力,这使得它们非常通用,现在的一些模型(包括问题讨论的这篇)都assume输入的大小是固定的,直观上看不能算太通用的框架(所以不敢苟同MLP is all you need这种观点)。

知乎网友@mathfinder对原文方法的总结:

总体而言相对遗憾,没有超过SOTA,仅仅是可比较。从实验结果来看跟ViT相比还是全面落后,但还是给人一些启发的,毕竟结构极致简单。 本文核心是设计了非常小巧的Mixer-Layer,通过MLP来交互每个patches的信息。实际上,经过一次mixer-layer,每个patch就能拿到全图的信息。

知乎网友@Rooftrellen表示:

感觉有点标题党,照这么说CNN也是MLP了,MLP本来就是现在大部分架构的building block,区别只是这些子MLP如何连接,如何共享权重等等。

知乎网友@大白杨表示:

谷歌还是不会取名字,要换成国内组的话,直接一个"MLP is All You Need"或者"Make MLP Great Again"。

三金我觉得倒是觉得发论文可以再大胆一些:

《震惊!无需卷积、注意力、MLP、神经网络,甚至无需计算机,只用人眼就能达到图像识别/检测/分割的SOTA水平》

最后,对于这篇论文和MLP的回归,您怎么看?

参考链接:

https://www.zhihu.com/question/457926000

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-05-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI算法修炼营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档