前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >听说你还缺单细胞亚群标记基因

听说你还缺单细胞亚群标记基因

作者头像
生信技能树
发布2021-05-27 15:48:08
发布2021-05-27 15:48:08
2.9K00
代码可运行
举报
文章被收录于专栏:生信技能树生信技能树
运行总次数:0
代码可运行

我们做肿瘤研究的单细胞数据,一般来说初步定义细胞亚群, 第一次分群是通用规则,按照 :

  • immune (CD45+,PTPRC),
  • epithelial/cancer (EpCAM+,EPCAM),
  • stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)

然后绝大部分都是抓住免疫细胞亚群进行细分,包括淋巴系(T,B,NK细胞)和髓系(单核,树突,巨噬,粒细胞)的两大类作为第二次细分亚群。第三次细分亚群就会深入到T淋巴细胞的CD8和CD4细分,这个时候很多人就很难搞起来各个细分亚群的标记基因了,最近( 06 May 2021)出来了一个文章:《A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer》,链接是:https://www.nature.com/articles/s41591-021-01323-8

这方面就做的很细致,如下所示的基因:

但是这么多基因名字,如果你也想把它用起来,得一个个手敲。这当然是不符合咱们现代人的习惯啦,我们善假于物,所以我随手找了一个网页工具:http://www.ocrmaker.com/

结果可以接受!其实主要是1和I这两个很难区分,修改回来即可:

代码语言:javascript
代码运行次数:0
运行
复制
The following requested variables were not found (10 out of 13 shown): 
LEFI, ANXAI, SATI, PDCDI, TOBI, FCGRGA, KLRCI, KLRDI, TRDVI, MK167

需要一些手动修改,最后绘图代码如下:

代码语言:javascript
代码运行次数:0
运行
复制
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
load(file = 'main_sce_recluster.Rdata')
marker_genes= c("LEF1","TCF7","SELL","IL7R","CD40LG","ANXA1","FOS",
                "JUN","FOXP3","SAT1","IL2RA","CTLA4","PDCD1","CXCL13","CD200",
                "TNFRSF18","CCR7","NELL2","CD55","KLF2","TOB1","ZNF683","CCL5",
                "GZMK","EOMES","ITM2C","CX3CR1","GNLY","GZMH","GZMB","LAG3","CCL4L2",
                "FCGR3A","FGFBP2","TYROBP","AREG","XCL1","KLRC1","TRDV2","TRGV9","MTRNR2L8",
                "KLRD1","TRDV1","KLRC3",
                "CTSW","CD7","MKI67","STMN1","TUBA1B","HIST1H4C" )


p <- DotPlot(sce, features = marker_genes,
             assay='RNA' ,group.by = 'cellSubType' )  + coord_flip() +
  theme(axis.text.x = element_text(angle = 90))

p
ggsave('check_g1_markers_by_cellSubType.pdf')


marker_genes =c("CD3D","CD4","CD8A","CCR7","LEF1","SELL","TCF7","GNLY","IFNG","NKG7","PRF1",
   "GZMA","GZMB","GZMH","GZMK","HAVCR2","LAG3","PDCD1","CTLA4","TIGIT","BTLA","KLRC1",
   "ANXA1","ANKRD28","CD69","CD40LG","ZNF683","FOXP3","IL2RA","IKZF2","NCR1","NCAM1",
   "TYROBP","KLRD1","KLRF1","KLRB1","CX3CR1","FCGR3A",
   "XCL1","XCL2","TRDV2","TRGV9","TRGC2","MKI67","TOP2A")

p <- DotPlot(sce, features = marker_genes,
             assay='RNA' ,group.by = 'cellSubType' )  + coord_flip() +
  theme(axis.text.x = element_text(angle = 90))

p
ggsave('check_g2_markers_by_cellSubType.pdf')



可以看到效果还不错!

如果你也有T淋巴细胞的CD8和CD4细分需求,这些基因拿去使用吧!

工具并不是万能的

比如当我想上传的图片里面的基因名字有一些重叠的时候 :

这个时候肉眼其实是可以区分的, 所以你还可以退而求其次,选择比较廉价的本科生帮你手敲这些基因名字哦!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-05-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信技能树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 工具并不是万能的
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档