
MySQL 8.0 MVCC 源码解析
前言
之前在 面试必问的 MySQL,你懂了吗?中简单的介绍了 MVCC 的原理,掌握了这个原理其实在面试时是可以加分不少的。
因为现在很多人的理解还是停留在《高性能 MySQL》书中的版本,也就是通过创建版本号和删除版本号来判断。这个时候如果你能给出正确的理解,则会让面试官眼前一亮,这也是我们在面试中凸显出“自己和其他候选者不一样的地方”,会更有利于在众多候选者中脱颖而出。
本文在此基础上,对 MVCC 展开详细的分析,同时修改了之前的一些不太准确的说法,希望可以助你在面试中更好的发(zhuang)挥(bi)。
PS:本文的源码基于MySQL 8.0.16,对于现阶段生产环境常用的 5.7.* 版本,MVCC 部分的源码基本相同,因此可以放心参考。而 5.6.* 则有比较大的不同,主要是一些数据结构都改变了,但是究其核心原理还是基本一致的。
脏读:一个事务读取到另一个事务更新但还未提交的数据,如果另一个事务出现回滚或者进一步更新,则会出现问题。

不可重复读:在一个事务中两次次读取同一个数据时,由于在两次读取之间,另一个事务修改了该数据,所以出现两次读取的结果不一致。

幻读:在一个事务中使用相同的 SQL 两次读取,第二次读取到了其他事务新插入的行。

要解决这些并发事务带来的问题,一个比较简单粗暴的方法是加锁,但是加锁必然会带来性能的降低,因此 MySQL 使用了 MVCC 来提升并发事务下的性能。
试想,如果没有 MVCC,为了保证并发事务的安全,一个比较容易想到的办法就是加读写锁,实现:读读不冲突、读写冲突、写读冲突,写写冲突,在这种情况下,并发读写的性能必然会收到严重影响。
而通过 MVCC,我们可以做到读写之间不冲突,我们读的时候只需要将当前记录拷贝一份到内存中(ReadView),之后该事务的查询就只跟 ReadView 打交道,不影响其他事务对该记录的写操作。
读未提交(Read Uncommitted):最低的隔离级别,会读取到其他事务还未提交的内容,存在脏读。
读已提交(Read Committed):读取到的内容都是已经提交的,可以解决脏读,但是存在不可重复读。
可重复读(Repeatable Read):在一个事务中多次读取时看到相同的内容,可以解决不可重复读,但是存在幻读。但是在 InnoDB 中不存在幻读问题,对于快照读,InnoDB 使用 MVCC 解决幻读,对于当前读,InnoDB 通过 gap locks 或 next-key locks 解决幻读。
串行化(Serializable):最高的隔离级别,串行的执行事务,没有并发事务问题。
trx_sys_t:事务系统中央存储器数据结构
struct trx_sys_t {
TrxSysMutex mutex; /*! 互斥锁 */
MVCC *mvcc; /*! mvcc */
volatile trx_id_t max_trx_id; /*! 要分配给下一个事务的事务id*/
std::atomic<trx_id_t> min_active_id; /*! 最小的活跃事务Id */
// 省略...
trx_id_t rw_max_trx_id; /*!< 最大读写事务Id */
// 省略...
trx_ids_t rw_trx_ids; /*! 当前活跃的读写事务Id列表 */
Rsegs rsegs; /*!< 回滚段 */
// 省略...
};MVCC:MVCC 读取视图管理器
class MVCC {
public:
// 省略...
/** 创建一个视图 */
void view_open(ReadView *&view, trx_t *trx);
/** 关闭一个视图 */
void view_close(ReadView *&view, bool own_mutex);
/** 释放一个视图 */
void view_release(ReadView *&view);
// 省略...
/** 判断视图是否处于活动和有效状态 */
static bool is_view_active(ReadView *view) {
ut_a(view != reinterpret_cast<ReadView *>(0x1));
return (view != NULL && !(intptr_t(view) & 0x1));
}
// 省略...
private:
typedef UT_LIST_BASE_NODE_T(ReadView) view_list_t;
/** 空闲可以被重用的视图*/
view_list_t m_free;
/** 活跃或者已经关闭的 Read View 的链表 */
view_list_t m_views;
};ReadView:视图,某一时刻的一个事务快照
class ReadView {
// 省略...
private:
/** 高水位,大于等于这个ID的事务均不可见*/
trx_id_t m_low_limit_id;
/** 低水位:小于这个ID的事务均可见 */
trx_id_t m_up_limit_id;
/** 创建该 Read View 的事务ID*/
trx_id_t m_creator_trx_id;
/** 创建视图时的活跃事务id列表*/
ids_t m_ids;
/** 配合purge,标识该视图不需要小于m_low_limit_no的UNDO LOG,
* 如果其他视图也不需要,则可以删除小于m_low_limit_no的UNDO LOG*/
trx_id_t m_low_limit_no;
/** 标记视图是否被关闭*/
bool m_closed;
// 省略...
};为了实现 MVCC,InnoDB 会向数据库中的每行记录增加三个字段:
DB_ROW_ID:行ID,6字节,随着插入新行而单调递增,如果有主键,则不会包含该列。
DB_TRX_ID:事务ID,6字节,记录插入或更新该行的最后一个事务的事务标识,也就是事务ID。
DB_ROLL_PTR:回滚指针,7字节,指向写入回滚段的 undo log 记录。每次对某条记录进行更新时,会通过 undo log 记录更新前的行内容,更新后的行记录会通过 DB_ROLL_PTR 指向该 undo log 。当某条记录被多次修改时,该行记录会存在多个版本,通过DB_ROLL_PTR 链接形成一个类似版本链的概念,大致如下图所示。

源码分析
在源码中,添加这3个字段的方法在:/storage/innobase/dict/dict0dict.cc 的 dict_table_add_system_columns 方法中,核心部分如下图。

当我们更新一条数据,InnoDB 会进行如下操作:
删除操作:在底层实现中是使用更新来实现的,逻辑基本和更新操作一样,几个需要注意的点:1)写 undo log 中,会通过 type_cmpl 来标识是删除还是更新,并且不记录列的旧值;2)这边不会直接删除,只会给行记录的 info_bits 打上删除标识(REC_INFO_DELETED_FLAG),之后会由专门的 purge 线程来执行真正的删除操作。
插入操作:相比于更新操作比较简单,就是新增一条记录,DB_TRX_ID 使用当前的事务Id,同样会有 undo log 和 redo log。
源码分析
更新行记录的核心源码在:/storage/innobase/btr/btr0cur.cc/btr_cur_update_in_place 方法,核心部分如下图。

当我们的隔离级别为 RR 时:每开启一个事务,系统会给该事务会分配一个事务 Id,在该事务执行第一个 select 语句的时候,会生成一个当前时间点的事务快照 ReadView,核心属性如下:
源码分析
MVCC 模式下的普通查询主方法入口在:/storage/innobase/row/row0sel.cc 的 row_search_mvcc 方法中,之后的所有源码分析基本都在该方法内。
具体创建视图的方法在 ReadView::prepare,调用链如下:
row_search_mvcc -> trx_assign_read_view -> MVCC::view_open ->
ReadView::prepare,源码如下:

最后,会将这个创建的 ReadView 添加到 MVCC 的 m_views 中。
视图可见性判断:SQL 查询走聚簇索引
有了这个 ReadView,这样在访问某条记录时,只需要按照下边的步骤判断记录的某个版本是否可见:
在进行判断时,首先会拿记录的最新版本来比较,如果该版本无法被当前事务看到,则通过记录的 DB_ROLL_PTR 找到上一个版本,重新进行比较,直到找到一个能被当前事务看到的版本。
而对于删除,其实就是一种特殊的更新,InnoDB 在 info_bits 中用一个标记位 delete_flag 标识是否删除。当我们在进行判断时,会检查下 delete_flag 是否被标记,如果是,则会根据情况进行处理:1)如果索引是聚簇索引,并且具有唯一特性(主键、唯一索引等),则返回 DB_RECORD_NOT_FOUND;2)否则,会寻找下一条记录继续流程。
其实很容易理解,如果是唯一索引查询,必然只有一条记录,如果被删除了则直接返回空,而如果是普通索引,可能存在多个相同值的行记录,该行不存在,则继续查找下一条。
以上内容是对于 RR 级别来说,而对于 RC 级别,其实整个过程几乎一样,唯一不同的是生成 ReadView 的时机,RR 级别只在事务第一次 select 时生成一次,之后一直使用该 ReadView。而 RC 级别则在每次 select 时,都会生成一个 ReadView。
源码分析
走聚簇索引的核心流程在 row_search_mvcc 方法,如下:

视图可见性判断在方法:changes_visible,调用链如下:
row_search_mvcc -> lock_clust_rec_cons_read_sees ->
changes_visible,源码如下:

判断记录是否被打上 delete_flag 标的方法在:/storage/innobase/include/rem0rec.ic 的 rec_get_deleted_flag 方法中,如下图。

获取记录的上一个版本
获取记录的上一个版本,主要是通过 DB_ROLL_PTR 来实现,核心流程如下:
源码解析
构建记录的上一个版本:trx_undo_prev_version_build,调用链如下:
row_search_mvcc -> row_sel_build_prev_vers_for_mysql -> row_vers_build_for_consistent_read -> trx_undo_prev_version_build,源码如下:

面试必问的 MySQL,你懂了吗? 只分析了走聚簇索引的情况,本文简单的介绍下走普通(二级)索引的情况。
当走普通索引时,判断逻辑如下:
源码分析
普通(非聚簇)索引的视图可见性判断在方法:lock_sec_rec_cons_read_sees,调用链如下:
row_search_mvcc -> lock_sec_rec_cons_read_sees,源码如下:


ICP 是 MySQL 5.6 引入的一个优化,根据官方的说法:ICP 可以减少存储引擎访问基表的次数 和 MySQL 访问存储引擎的次数,这边涉及到 MySQL 底层的处理逻辑,不是本文重点,这边不进行细讲。
这边用官方的例子简单介绍下,我们有张 people 表,索引定义为:INDEX (zipcode, lastname, firstname),对于以下这个 SQL:
SELECT * FROM people
WHERE zipcode='95054'
AND lastname LIKE '%etrunia%'
AND address LIKE '%Main Street%';当没有使用 ICP 时:此查询会使用该索引,但是必须扫描 people 表所有符合 zipcode='95054' 条件的记录。
当使用 ICP 时:不仅会使用 zipcode 的条件来进行过滤,还会使用 (lastname LIKE '%etrunia%')来进行过滤,这样可以避免扫描符合 zipcode 条件而不符合 lastname 条件匹配的记录行 。
ICP 的官方文档:https://dev.mysql.com/doc/refman/8.0/en/index-condition-pushdown-optimization.html
当前读:官方叫做 Locking Reads(锁定读取),读取数据的最新版本。常见的 update/insert/delete、还有 select ... for update、select ... lock in share mode 都是当前读。
官方文档:https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
快照读:官方叫做 Consistent Nonlocking Reads(一致性非锁定读取,也叫一致性读取),读取快照版本,也就是 MVCC 生成的 ReadView。用于普通的 select 的语句。
官方文档:https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
MVCC 解决了部分幻读,但并没有完全解决幻读。
对于快照读,MVCC 因为因为从 ReadView 读取,所以必然不会看到新插入的行,所以天然就解决了幻读的问题。
而对于当前读的幻读,MVCC 是无法解决的。需要使用 Gap Lock 或 Next-Key Lock(Gap Lock + Record Lock)来解决。
其实原理也很简单,用上面的例子稍微修改下以触发当前读:select * from user where id < 10 for update,当使用了 Gap Lock 时,Gap 锁会锁住 id < 10 的整个范围,因此其他事务无法插入 id < 10 的数据,从而防止了幻读。
SQL 标准中规定的 RR 并不能消除幻读,但是 MySQL InnoDB 的 RR 可以,靠的就是 Gap 锁。在 RR 级别下,Gap 锁是默认开启的,而在 RC 级别下,Gap 锁是关闭的。

解析:RR 生成 ReadView 的时机是事务第一个 select 的时候,而不是事务开始的时候。右边的例子中,事务1在事务2提交了修改后才执行第一个 select,因此生成的 ReadView 中,a 的是 100 而不是事务1刚开始时的 50。

解析:RR 级别只在事务第一次 select 时生成一次,之后一直使用该 ReadView。而 RC 级别则在每次 select 时,都会生成一个 ReadView,所以 在第二次 select 时,读取到了事务2对于 a 的修改值。
MySQL 的源码主要是 c++ 写的,因此自己看起来比较吃力,花了挺多时间学习整理的。如果你能掌握本文的内容,面试 Java 岗位,无论是哪个公司,相信都能让面试官眼前一亮。
现在互联网的竞争越来越激烈,如果很多东西都只停留在表面,很难取得面试官的“芳心”,只有在适当的时候亮出自己的“长剑”,才能在众多候选人中凸显出自己的与众不同。你需要向面试官证明,为什么是你而不是其他人。