我们的业务中经常会遇到穿库的问题,通常可以通过缓存解决。如果数据维度比较多,结果数据集合比较大时,缓存的效果就不明显了。
因此为了解决穿库的问题,我们引入Bloom Filter。
Redis实战学习笔记地址:Redis核心思维导图+Redis实战学习笔记
开源项目地址:
https://github.com/luw2007/bloomfilter
我们先看看一般业务缓存流程:
先查询缓存,缓存不命中再查询数据库。然后将查询结果放在缓存中即使数据不存在,也需要创建一个缓存,用来防止穿库。
这里需要区分一下数据是否存在。如果数据不存在,缓存时间可以设置相对较短,防止因为主从同步等问题,导致问题被放大。
这个流程中存在薄弱的问题是,当用户量太大时,我们会缓存大量数据空数据,并且一旦来一波冷用户,会造成雪崩效应。
对于这种情况,我们产生第二个版本流程:redis过滤冷用户缓存流程
我们将数据库里面中命中的用户放在redis的set类型中,设置不过期。这样相当把redis当作数据库的索引,只要查询redis,就可以知道是否数据存在。
redis中不存在就可以直接返回结果。如果存在就按照上面提到一般业务缓存流程处理。
聪明的你肯定会想到更多的问题:
问题1需要区分业务场景,结果数据少,我们是可以直接使用redis作为缓存,直接返回数据。结果比较大就不太适合用redis存放了。比如ugc内容,一个评论里面可能存在上万字,业务字段多。
redis使用有很多技巧。bigkey 危害比较大,无论是扩容或缩容带来的内存申请释放, 还是查询命令使用不当导致大量数据返回,都会影响redis的稳定。这里就不细谈原因及危害了。
解决bigkey 方法很简单。我们可以使用hash函数来分桶,将数据分散到多个key中。减少单个key的大小,同时不影响查询效率。
问题3是redis存储占用内存太大。因此我们需要减少内存使用。重新思考一下引入redis的目的。redis像一个集合,整个业务就是验证请求的参数是否在集合中。
这个结构就像洗澡的时候用的双向阀门:左边热水,右边冷水。
大部分的编程语言都内置了filter。拿python举例,filter函数用于过滤序列, 过滤掉不符合条件的元素,返回由符合条件元素组成的列表。
我们看个例子:
$ python2
Python 2.7.10 (default, Oct 6 2017, 22:29:07)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> s = {2, 4}
>>> filter(lambda x:x in s, [0, 1, 2])
[2]
集合s中存在 2,4两个数字,我们需要查询 0,1,2 那些在集合s中。 lambda x:x in s构造一个匿名函数,判断入参x是否在集合s中。过滤器filter依次对列表中的数字执行匿名函数。最终返回列表2。
redis中实现set用了两种结构:intset和hash table。非数字或者大量数字时都会退化成hash table。那么是否好的算法可以节省hash table的大小呢?
其实早在1970年由Burton Howard Bloom提出的布隆过滤器(英语:Bloom Filter)。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。
它的优点是空间效率和查询时间都远远超过一般的算法, 缺点是有一定的误识别率和删除困难。
我们常见的将业务字段拼接之后md5,放在一个集合中。md5生成一个固定长度的128bit的串。如果我们用bitmap来表示,则需要
2**128 = 340282366920938463463374607431768211456 bit
判断一个值在不在,就变成在这个bitmap中判断所在位是否为1。但是我们全世界的机器存储空间也无法存储下载。因此我们只能分配有限的空间来存储。比如:
当只有一个hash函数时:很容易发生冲突。
可以看到上面1和2的hash结果都是7,发生冲突。如果增加hash函数,会发生什么情况?
我们使用更多的hash函数和更大的数据集合来测试。得到下面这张表
由此可以看到当增加hash方法能够有效的降低碰撞机率。比较好的数据如下:
但是增加了hash方法之后,会降低空间的使用效率。当集合占用总体空间达到25%的时候, 增加hash 的效果已经不明显
上面的使用多个hash方法来降低碰撞就是BloomFilter的核心思想。
对于BloomFilter的优点来说,缺点都可以忽略。毕竟只需要kN的存储空间就能存储N个元素。空间效率十分优秀。
BloomFilter 需要一个大的bitmap来存储。鉴于目前公司现状,最好的存储容器是redis。从github topics: bloom-filter中经过简单的调研。
redis集成BloomFilter方案:
原生python 方法太慢,lua脚本和module 部署比较麻烦。于是我们推荐使用pyreBloom,底层使用。
pyreBloom:master λ ls
Makefile bloom.h bloom.pxd murmur.c pyreBloom.pyx
bloom.c bloom.o main.c pyreBloom.c
从文件命名上可以看到bloom 使用c编写。pyreBloom 使用cython编写。
bloom.h 里面实现BloomFilter的核心逻辑,完成与redis server的交互;hash函数;添加,检查和删除方法的实现。
pyreBloom.pyx
import math import random cimport bloom class pyreBloomException(Exception): '''Some sort of exception has happened internally''' pass cdef class pyreBloom(object): cdef bloom.pyrebloomctxt context cdef bytes key property bits: def __get__(self): return self.context.bits property hashes: def __get__(self): return self.context.hashes def __cinit__(self, key, capacity, error, host='127.0.0.1', port=6379, password='', db=0): self.key = key if bloom.init_pyrebloom(&self.context, self.key, capacity, error, host, port, password, db): raise pyreBloomException(self.context.ctxt.errstr) def __dealloc__(self): bloom.free_pyrebloom(&self.context) def delete(self): bloom.delete(&self.context) def put(self, value): if getattr(value, '__iter__', False): r = bloom.add(&self.context, v, len(v)) for v in value r = bloom.add_complete(&self.context, len(value)) else: bloom.add(&self.context, value, len(value)) r = bloom.add_complete(&self.context, 1) if r < 0: raise pyreBloomException(self.context.ctxt.errstr) return r def add(self, value): return self.put(value) def extend(self, values): return self.put(values) def contains(self, value): #If the object is 'iterable'... if getattr(value, '__iter__', False): r = bloom.check(&self.context, v, len(v)) for v in value r = bloom.check_next(&self.context) for i in range(len(value)) if (min(r) < 0): raise pyreBloomException(self.context.ctxt.errstr) return v for v, included in zip(value, r) if included else: bloom.check(&self.context, value, len(value)) r = bloom.check_next(&self.context) if (r < 0): raise pyreBloomException(self.context.ctxt.errstr) return bool(r) def __contains__(self, value): return self.contains(value) def keys(self): '''Return a list of the keys used in this bloom filter''' return [self.context.keysi for i in range(self.context.num_keys)]
原生pyreBloom方法:
cdef class pyreBloom(object): cdef bloom.pyrebloomctxt context cdef bytes property bits: property hashes: // 使用的hash方法数 def delete(self): // 删除,会在redis中删除 def put(self, value): // 添加 底层方法, 不建议直接调用 def add(self, value): // 添加单个元素,调用put方法 def extend(self, values): // 添加一组元素,调用put方法 def contains(self, value): // 检查是否存在,当
value
可以迭代时,返回[value]
, 否则返回bool
def keys(self): // 在redis中存储的key列表
由于pyreBloom使用hiredis库,本身没有重连等逻辑,于是做了简单的封装。
#coding=utf-8 ''' bloom filter 基础模块 可用方法: extend, keys, contains, add, put, hashes, bits, delete 使用方法:class TestModel(BaseModel): ... PREFIX = "bf:test" t = TestModel() t.add('hello') 1 t.extend('hi', 'world') 2 t.contains('hi') True t.delete() ''' import logging from six import PY3 as IS_PY3 from pyreBloom import pyreBloom, pyreBloomException from BloomFilter.utils import force_utf8 class BaseModel(object): ''' bloom filter 基础模块 参数: SLOT: 可用方法类型 PREFIX: redis前缀 BF_SIZE: 存储最大值 BF_ERROR: 允许的出错率 RETRIES: 连接重试次数 host: redis 服务器IP port: redis 服务器端口 db: redis 服务器DB _bf_conn: 内部保存
pyreBloom
实例 ''' SLOT = {'add', 'contains', 'extend', 'keys', 'put', 'delete', 'bits', 'hashes'} PREFIX = "" BF_SIZE = 100000 BF_ERROR = 0.01 RETRIES = 2 def __init__(self, redis=None): ''' 初始化redis配置 :param redis: redis 配置 ''' #这里初始化防止类静态变量多个继承类复用,导致数据被污染 self._bf_conn = None self._conf = { 'host': '127.0.0.1', 'password': '', 'port': 6379, 'db': 0 } if redis: for k, v in redis.items(): if k in self._conf: self._confk = redisk self._conf = force_utf8(self._conf) @property def bf_conn(self): ''' 初始化pyreBloom ''' if not self._bf_conn: prefix = force_utf8(self.PREFIX) logging.debug( 'pyreBloom connect: redis://%s:%s/%s, (%s%s%s)', self._conf'host', self._conf'port', self._conf'db', prefix, self.BF_SIZE, self.BF_ERROR, ) self._bf_conn = pyreBloom( prefix, self.BF_SIZE, self.BF_ERROR, **self._conf) return self._bf_conn def __getattr__(self, method): '''调用pyrebloom方法 没有枚举的方法将从pyreBloom
中获取 :param method: :return: pyreBloom.{method} ''' #只提供内部方法 if method not in self.SLOT: raise NotImplementedError() #捕获pyreBloom
的异常, 打印必要的日志 def catch_error(*a, **kwargs): '''多次重试服务''' args = force_utf8(a) kwargs = force_utf8(kwargs) for _ in range(self.RETRIES): try: func = getattr(self.bf_conn, method) res = func(*args, **kwargs) #python3 返回值和python2返回值不相同, #手工处理返回类型 if method == 'contains' and IS_PY3: if isinstance(res, list): return i.decode('utf8') for i in res return res except pyreBloomException as error: logging.warn( 'pyreBloom Error:%s%s', method, str(error)) self.reconnect() if _ == self.RETRIES: logging.error('pyreBloom Error') raise error return catch_error def __contains__(self, item): '''跳转__contains__方法 :param item: 查询元素列表/单个元素 :type item: list/basestring :return: bool.../bool ''' return self.contains(item) def reconnect(self): ''' 重新连接bloompyreBloom
连接使用c driver,没有提供timeout参数,使用了内置的timeout 同时为了保证服务的可靠性,增加了多次重试机制。 struct timeval timeout = { 1, 5000 }; ctxt->ctxt = redisConnectWithTimeout(host, port, timeout); del self._bf_conn 会调用pyreBloom
内置的C的del方法,会关闭redis连接 ''' if self._bf_conn: logging.debug('pyreBloom reconnect') del self._bf_conn self._bf_conn = None _ = self.bf_conn
提供了一种在BloomFilter上实现删除操作的方法,而无需重新重新创建过滤器。在计数滤波器中,阵列位置(桶)从单个位扩展为n位计数器。实际上,常规布隆过滤器可以被视为计数过滤器,其桶大小为一位。
插入操作被扩展为递增桶的值,并且查找操作检查每个所需的桶是否为非零。然后,删除操作包括递减每个桶的值。
存储桶的算术溢出是一个问题,并且存储桶应该足够大以使这种情况很少见。如果确实发生,则增量和减量操作必须将存储区设置为最大可能值,以便保留BloomFilter的属性。
计数器的大小通常为3或4位。因此,计算布隆过滤器的空间比静态布隆过滤器多3到4倍。相比之下, Pagh,Pagh和Rao(2005)以及Fan等人的数据结构。(2014)也允许删除但使用比静态BloomFilter更少的空间。
计数过滤器的另一个问题是可扩展性有限。由于无法扩展计数布隆过滤器表,因此必须事先知道要同时存储在过滤器中的最大键数。一旦超过表的设计容量,随着插入更多密钥,误报率将迅速增长。
Bonomi等人。(2006)引入了一种基于d-left散列的数据结构,它在功能上是等效的,但使用的空间大约是计算BloomFilter的一半。此数据结构中不会出现可伸缩性问题。一旦超出设计容量,就可以将密钥重新插入到双倍大小的新哈希表中。
Putze,Sanders和Singler(2007)的节省空间的变体也可用于通过支持插入和删除来实现计数过滤器。
Rottenstreich,Kanizo和Keslassy(2012)引入了一种基于变量增量的新通用方法,该方法显着提高了计算布隆过滤器及其变体的误报概率,同时仍支持删除。
与计数布隆过滤器不同,在每个元素插入时,散列计数器以散列变量增量而不是单位增量递增。要查询元素,需要考虑计数器的确切值,而不仅仅是它们的正面性。如果由计数器值表示的总和不能由查询元素的相应变量增量组成,则可以将否定答案返回给查询。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。