Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >企业微信的IM架构设计揭秘:消息模型、万人群、已读回执、消息撤回等

企业微信的IM架构设计揭秘:消息模型、万人群、已读回执、消息撤回等

作者头像
JackJiang
修改于 2021-07-19 09:44:40
修改于 2021-07-19 09:44:40
4K1
举报
文章被收录于专栏:即时通讯技术即时通讯技术

本文作者潘唐磊,腾讯WXG(微信事业群)开发工程师,毕业于中山大学。内容有修订。

1、内容概述

本文总结了企业微信的IM消息系统架构设计,阐述了企业业务给IM架构设计带来的技术难点和挑战,以及技术方案的对比与分析。同时总结了IM后台开发的一些常用手段,适用于IM消息系统。

* 推荐阅读:企业微信团队分享的另一篇《企业微信客户端中组织架构数据的同步更新方案优化实战》也值得一读。

学习交流: - 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》 - 开源IM框架源码:https://github.com/JackJiang2011/MobileIMSDK

2、名词解释

以下是本文内容中涉及到的技术名词缩写,具体意义如下:

  • 1)seq:自增长的序列号,每条消息对应一个(见:《微信的海量IM聊天消息序列号生成实践》);
  • 2)ImUnion:消息互通系统,用于企业微信与微信的消息打通;
  • 3)控制消息:即控制指令,属不可见消息,是复用消息通道的一种可靠通知机制;
  • 4)应用消息:系统应用下发的消息;
  • 5)api 消息:第三方应用下发的消息;
  • 6)appinfo:每条消息对应的唯一strid,全局唯一。同一条消息的appinfo在所有的接收方中是相同的。

3、技术背景

企业微信作为一款办公协同的产品,聊天消息收发是最基础的功能。消息系统的稳定性、可靠性、安全性尤其重要。

消息系统的构建与设计的过程中,面临着较多的难点。而且针对toB场景的消息系统,需要支持更为复杂的业务场景。

针对toB场景的特有业务有:

  • 1)消息鉴权:关系类型有群关系、同企业同事关系、好友关系、集团企业关系、圈子企业关系。收发消息双方需存在至少一种关系才允许发消息;
  • 2)回执消息:每条消息都需记录已读和未读人员列表,涉及频繁的状态读写操作;
  • 3)撤回消息:支持24小时的有效期撤回动作;
  • 4)消息存储:云端存储时间跨度长,最长可支持180天消息存储,数百TB用户消息需优化,减少机器成本;
  • 5)万人群聊:群人数上限可支持10000人,一条群消息就像一次小型的DDoS攻击
  • 6)微信互通:两个异构的im系统直接打通,可靠性和一致性尤其重要。

4、整体架构设计1:架构分层

如上所示,整体架构分层如下。

1)接入层:统一入口,接收客户端的请求,根据类型转发到对应的CGI层。客户端可以通过长连或者短连连接wwproxy。活跃的客户端,优先用长连接发起请求,如果长连失败,则选用短连重试。

2)CGI层:http服务,接收wwproxy的数据包,校验用户的session状态,并用后台派发的秘钥去解包,如解密失败则拒绝请求。解密成功,则把明文包体转发到后端逻辑层对应的svr。

3)逻辑层:大量的微服务和异步处理服务,使用自研的hikit rpc框架,svr之间使用tcp短连进行通信。进行数据整合和逻辑处理。和外部系统的通信,通过http协议,包括微信互通、手机厂商的推送平台等。

4)存储层:消息存储是采用的是基于levelDB模型开发msgkv。SeqSvr是序列号生成器,保证派发的seq单调递增不回退,用于消息的收发协议。

5、整体架构设计2:消息收发模型

企业微信的消息收发模型采用了推拉方式,这种方式可靠性高,设计简单。

以下是消息推拉的时序图:

PS:如上图所示,发送方请求后台,把消息写入到接收方的存储,然后push通知接收方。接受方收到push,主动上来后台收消息。

不重、不丢、及时触达,这三个是消息系统的核心指标:

  • 1)实时触达:客户端通过与后台建立长连接,保证消息push的实时触达;
  • 2)及时通知:如果客户端长连接不在,进程被kill了,利用手机厂商的推送平台,推送通知,或者直接拉起进程进行收消息;
  • 3)消息可达:假如遇到消息洪峰,后台的push滞后,客户端有轮训机制进行兜底,保证消息可达;
  • 4)消息防丢:为了防止消息丢失,只要后台逻辑层接收到请求,保证消息写到接收方的存储,失败则重试。如果请求在CGI层就失败,则返回给客户端出消息红点;
  • 5)消息排重:客户端在弱网络的场景下,有可能请求已经成功写入存储,回包超时,导致客户端重试发起相同的消息,那么就造成消息重复。为了避免这种情况发生,每条消息都会生成唯一的appinfo,后台通过建立索引进行排重,相同的消息直接返回成功,保证存储只有一条。

6、整体架构设计3:消息扩散写

IM中消息分发的典型方式,一般有两种:

  • 1)扩散读;
  • 2)扩散写。

6.1 扩散读

即:每条消息只存一份,群聊成员都读取同一份数据。

优点:节省存储容量。

缺点:

  • ① 每个用户需存储会话列表,通过会话id去拉取会话消息;
  • ② 收消息的协议复杂,每个会话都需要增量同步消息,则每个会话都需要维护一个序列号。

6.2 扩散写

即:每条消息存多份,每个群聊成员在自己的存储都有一份。

优点:

  • ① 只需要通过一个序列号就可以增量同步所有消息,收消息协议简单;
  • ② 读取速度快,前端体验好;
  • ③ 满足更多ToB的业务场景:回执消息、云端删除。

同一条消息,在每个人的视角会有不同的表现。例如:回执消息,发送方能看到已读未读列表,接受方只能看到是否已读的状态。云端删除某条群消息,在自己的消息列表消失,其他人还是可见。

缺点:存储容量的增加。

企业微信采用了扩散写的方式,消息收发简单稳定。存储容量的增加,可以通过冷热分离的方案解决,冷数据存到廉价的SATA盘,扩散读体验稍差,协议设计也相对复杂些。

下图是扩散写的协议设计:

如上图所示:

  • 1)每个用户只有一条独立的消息流。同一条消息多副本存在于每个用户的消息流中;
  • 2)每条消息有一个seq,在同个用户的消息流中,seq是单调递增的;
  • 3)客户端保存消息列表中最大seq,说明客户端已经拥有比该seq小的所有消息。若客户端被push有新消息到达,则用该seq向后台请求增量数据,后台把比此seq大的消息数据返回。

7、系统稳定性设计1:柔性策略

7.1 背景

企业微信作为一款to B场景的聊天im工具,用于工作场景的沟通,有着较为明显的高峰效应(如下图所示)。

正如上图所示:工作时间上午9:00~12:00、下午14:00~18:00,是聊天的高峰,消息量剧增。工作日和节假日也会形成明显的对比。

高峰期系统压力大,偶发的网络波动或者机器过载,都有可能导致大量的系统失败。im系统对及时性要求比较高,没办法进行削峰处理。那么引入一些柔性的策略,保证系统的稳定性和可用性非常有必要。

具体的做法就是启动过载保护策略:当svr已经达到最大处理能力的时候,说明处于一个过载的状态,服务能力会随着负载的增高而急剧下降。如果svr过载,则拒绝掉部分正常请求,防止机器被压垮,依然能对外服务。通过统计svr的被调耗时情况、worker使用情况等,判定是否处于过载状态。过载保护策略在请求高峰期间起到了保护系统的作用,防止雪崩效应。

下图就是因过载被拒绝掉的请求:

7.2 问题

上一小结中过载保护策略所带来的问题就是:系统过载返回失败,前端发消息显示失败,显示红点,会严重影响产品体验。

发消息是im系统的最基础的功能,可用性要求达到几乎100%,所以这个策略肯定需要优化。

7.3 解决方案

解决方案思路就是:尽管失败,也返回前端成功,后台保证最终成功。

为了保证消息系统的可用性,规避高峰期系统出现过载失败导致前端出红点,做了很多优化。

具体策略如下:

  • 1)逻辑层hold住失败请求,返回前端成功,不出红点,后端异步重试,直至成功;
  • 2)为了防止在系统出现大面积故障的时候,重试请求压满队列,只hold住半小时的失败请求,半小时后新来的请求则直接返回前端失败;
  • 3)为了避免重试加剧系统过载,指数时间延迟重试;
  • 4)复杂的消息鉴权(好友关系,企业关系,集团关系,圈子关系),耗时严重,后台波动容易造成失败。如果并非明确鉴权不通过,则幂等重试;
  • 5)为了防止作恶请求,限制单个用户和单个企业的请求并发数。例如,单个用户的消耗worker数超过20%,则直接丢弃该用户的请求,不重试。

优化后,后台的波动,前端基本没有感知。

以下是优化前后的流程对比:

8、系统稳定性设计2:系统解耦

由于产品形态的原因,企业微信的消息系统,会依赖很多外部模块,甚至外部系统。

例如:与微信消息互通,发送消息的权限需要放到ImUnion去做判定,ImUnion是一个外部系统,调用耗时较长。

再如:金融版的消息审计功能,需要把消息同步到审计模块,增加rpc调用。

再如:客户服务的单聊群聊消息,需要把消息同步到crm模块,增加rpc调用。为了避免外部系统或者外部模块出现故障,拖累消息系统,导致耗时增加,则需要系统解耦。

我们的方案:与外部系统的交互,全设计成异步化。

思考点:需要同步返回结果的请求,如何设计成异步化?

例如:群聊互通消息需经过ImUnion鉴权返回结果,前端用于展示消息是否成功发送。先让客户端成功,异步失败,则回调客户端使得出红点。

如果是非主流程,则异步重试保证成功,主流程不受影响,如消息审计同步功能。那么,只需要保证内部系统的稳定,发消息的主流程就可以不受影响。

解耦效果图:

9、系统稳定性设计3:业务隔离

企业微信的消息类型有多种:

  • 1)单聊群聊:基础聊天,优先级高;
  • 2)api 消息:企业通过api接口下发的消息,有频率限制,优先级中;
  • 3)应用消息:系统应用下发的消息,例如公告,有频率限制,优先级中;
  • 4)控制消息:不可见的消息。例如群信息变更,会下发控制消息通知群成员,优先级低。

群聊按群人数,又分成3类:

  • 1)普通群:小于100人的群,优先级高;
  • 2)大 群:小于2000人的群,优先级中;
  • 3)万人群:优先级低。

业务繁多:如果不加以隔离,那么其中一个业务的波动有可能引起整个消息系统的瘫痪。

重中之重:需要保证核心链路的稳定,就是企业内部的单聊和100人以下群聊,因为这个业务是最基础的,也是最敏感的,稍有问题,投诉量巨大。

其余的业务:互相隔离,减少牵连。按照优先级和重要程度进行隔离,对应的并发度也做了调整,尽量保证核心链路的稳定性。

解耦和隔离的效果图:

10、to B业务功能的设计与优化1:万人群

10.1 技术背景

企业微信的群人数上限是10000,只要群内每个人都发一条消息,那么扩散量就是10000 * 10000 = 1亿次调用,非常巨大。

10000人投递完成需要的耗时长,影响了消息的及时性。

10.2 问题分析

既然超大群扩散写量大、耗时长,那么自然会想到:超大群是否可以单独拎出来做成扩散读呢。

下面分析一下超大群设计成单副本面临的难点:

  • ① 一个超大群,一条消息流,群成员都同步这条流的消息;
  • ② 假如用户拥有多个超大群,则需要同步多条流,客户端需维护每条流的seq;
  • ③ 客户端卸载重装,并不知道拥有哪些消息流,后台需存储并告知;
  • ④ 某个超大群来了新消息,需通知所有群成员,假如push没触达,客户端没办法感知有新消息,不可能去轮训所有的消息流。

综上所述:单副本的方案代价太大。

以下将介绍我们针对万人群聊扩散写的方案,做的一些优化实践。

10.3 优化1:并发限制

万人群的扩散量大,为了是消息尽可能及时到达,使用了多协程去分发消息。但是并不是无限制地加大并发度。

为了避免某个万人群的高频发消息,造成对整个消息系统的压力,消息分发以群id为维度,限制了单个群的分发并发度。消息分发给一个人的耗时是8ms,那么万人的总体耗时是80s,并发上限是5,那么消息分发完成需要16s。16s的耗时,在产品角度来看还、是可以接受的,大群对及时性不敏感。同时,并发度控制在合理范围内。

除了限制单个群id的并发度,还限制了万人群的总体并发度。单台机,小群的worker数为250个,万人群的worker数为30。

万人群的频繁发消息,worker数用满,导致队列出现积压:

由于并发限制,调用数被压平,没有请求无限上涨,系统稳定:

10.4 优化2:合并插入

工作场景的聊天,多数是在小群完成,大群用于管理员发通知或者老板发红包。

大群消息有一个常见的规律:平时消息少,会突然活跃。例如:老板在群里发个大红包,群成员起哄,此时就会产生大量的消息。

消息量上涨、并发度被限制、任务处理不过来,那么队列自然就会积压。积压的任务中可能存在多条消息需要分发给同一个群的群成员。

此时:可以将这些消息,合并成一个请求,写入到消息存储,消息系统的吞吐量就可以成倍增加。

在日常的监控中,可以捕获到这种场景,高峰可以同时插入20条消息,对整个系统很友善。

10.5 优化3:业务降级

比如:群人员变更、群名称变动、群设置变更,都会在群内扩散一条不可见的控制消息。群成员收到此控制消息,则向后台请求同步新数据。

举个例子:一个万人群,由于消息过于频繁,对群成员造成骚扰,部分群成员选择退群来拒绝消息,假设有1000人选择退群。那么扩散的控制消息量就是1000w,用户收到控制消息就向后台请求数据,则额外带来1000w次的数据请求,造成系统的巨大压力。

控制消息在小群是很有必要的,能让群成员实时感知群信息的变更。

但是在大群:群信息的变更其实不那么实时,用户也感觉不到。所以结合业务场景,实施降级服务,控制消息在大群可以直接丢弃、不分发,减少对系统的调用。

11、to B业务功能的设计与优化2:回执消息

11.1 技术背景

回执消息是办公场景经常用到的一个功能,能看到消息接受方的阅读状态。

一条回执消息的阅读状态会被频繁修改,群消息被修改的次数和群成员人数成正比。每天上亿条消息,读写频繁,请求量巨大,怎么保证每条消息在接受双方的状态是一致的是一个难点。

11.2 实现方案

消息的阅读状态的存储方式两个方案。

方案一:

思路:利用消息存储,插入一条新消息指向旧消息,此新消息有最新的阅读状态。客户端收到新消息,则用新消息的内容替换旧消息的内容展示,以达到展示阅读状态的效果。

优点:复用消息通道,增量同步消息就可以获取到回执状态,复用通知机制和收发协议,前后端改造小。

缺点:

  • ① 存储冗余,状态变更多次,则需插入多条消息;
  • ② 收发双方都需要修改阅读状态(接收方需标志消息为已读状态),存在收发双方数据一致性问题。

方案二:

思路:独立存储每条消息的阅读状态,消息发送者通过消息id去拉取数据。

优点:状态一致。

缺点:

  • ① 构建可靠的通知机制,通知客户端某条消息属性发生变更;
  • ② 同步协议复杂,客户端需要准确知道哪条消息的状态已变更;
  • ③ 消息过期删除,阅读状态数据也要自动过期删除。

企业微信采用了方案一去实现,简单可靠、改动较小:存储冗余的问题可以通过LevelDB落盘的时候merge数据,只保留最终状态那条消息即可;一致性问题下面会介绍如何解决。

上图是协议流程(referid:被指向的消息id,senderid:消息发送方的msgid):

  • 1)每条消息都有一个唯一的msgid,只在单个用户内唯一,kv存储自动生成的;
  • 2)接收方b已读消息,客户端带上msgid=b1请求到后台;
  • 3)在接受方b新增一条消息,msgid=b2,referid=b1,指向msgid=b1的消息。并把msgid=b2的消息内容设置为消息已读。msgid=b1的消息体,存有发送方的msgid,即senderid=a1;
  • 4)发送方a,读出msgid=a1的消息体,把b加入到已读列表,把新的已读列表保存到消息体中,生成新消息msgid=a2,referid=a1,追加写入到a的消息流;
  • 5)接收方c已读同一条消息,在c的消息流走同样的逻辑;
  • 6)发送方a,读出msgid=a1的消息体,把c加入到已读列表,把新的已读列表保存到消息体中,生成新消息msgid=a3,referid=a1,追加写入到a的消息流。a3>a2,以msgid大的a3为最终状态。

11.3 优化1:异步化

接受方已读消息,让客户端同步感知成功,但是发送方的状态没必要同步修改。因为发送方的状态修改情况,接受方没有感知不到。那么,可以采用异步化的策略,降低同步调用耗时。

具体做法是:

  • 1)接受方的数据同步写入,让客户端马上感知消息已读成功;
  • 2)发送方的数据异步写入,减少同步请求;
  • 3)异步写入通过重试来保证成功,达到状态最终一致的目的。

11.4 优化2:合并处理

客户端收到大量消息,并不是一条一条消息已读确认,而是多条消息一起已读确认。为了提高回执消息的处理效率,可以对多条消息合并处理。

如上图所示:

  • 1)X>>A:表示X发了一条消息给A;
  • 2)A合并确认3条消息,B合并确认3条消息。那么只需要处理2次,就能标志6条消息已读;
  • 3)经过mq分发,相同的发送方也可以合并处理。在发送方,X合并处理2条消息,Y合并处理2条消息,Z合并处理2条消息,则合并处理3次就能标志6条消息。

经过合并处理,处理效率大大提高。下图是采集了线上高峰时期的调用数据。可以看得出来,优化后的效果一共节省了44%的写入量。

11.5 读写覆盖解决

发送方的消息处理方式是先把数据读起来,修改后重新覆盖写入存储。接收方有多个,那么就会并发写发送方数据,避免不了出现覆盖写的问题。

流程如下:

  • 1)发送方某条消息的已读状态是X;
  • 2)接收方a确认已读,已读状态修改为X+a;
  • 3)接收方b确认已读,已读状态修改为X+b;
  • 4)接收方a的状态先写入,接受方b的状态后写入。这最终状态为X+b;
  • 5)其实正确的状态是X+a+b。

处理这类问题,无非就一下几种办法。

方案一:因为并发操作是分布式,那么可以采用分布式锁的方式保证一致。操作存储之前,先申请分布式锁。这种方案太重,不适合这种高频多账号的场景。

方案二:带版本号读写。一个账号的消息流只有一个版本锁,高频写入的场景,很容易产生版本冲突,导致写入效率低下。

方案三:mq串行化处理。能避免覆盖写问题,关键是在合并场景起到很好的作用。同一个账号的请求串行化,就算出现队列积压,合并的策略也能提高处理效率。

企业微信采用了方案三,相同id的用户请求串行化处理,简单易行,逻辑改动较少。

12、to B业务功能的设计与优化3:撤回消息

12.1 技术难点

撤回消息”相当于更新原消息的状态,是不是也可以通过referid的方式去指向呢?

回执消息分析过:通过referid指向,必须要知道原消息的msgid。

区别于回执消息:撤回消息需要修改所有接收方的消息状态,而不仅仅是发送方和单个接收方的。消息扩散写到每个接收方的消息流,各自的消息流对应的msgid是不相同的,如果沿用referid的方式,那就需要记录所有接收方的msgid。

12.2 解决方案

分析:撤回消息比回执消息简单的是,撤回消息只需要更新消息的状态,而不需要知道原消息的内容。接收方的消息的appinfo都是相同的,可以通过appinfo去做指向。

协议流程:

  • 1)用户a、b、c,都存在同一条消息,appinfo=s,sendtime=t;
  • 2)a撤回该消息,则在a的消息流插入一条撤回的控制消息,消息体包含{appinfo=s,sendtime=t};
  • 3)客户端sync到撤回的控制消息,获取到消息体的appinfo与sendtime,把本地appinfo=s且sendtime=t的原消息显示为撤回状态,并删除原消息数据。之所以引入sendtime字段,是为了防止appinfo碰撞,加的双重校验;
  • 4)接收方撤回流程和发送方一致,也是通过插入撤回的控制消息。

该方案的优点明显,可靠性高,协议简单。

撤回消息的逻辑示意图:

13、思考与总结

企业微信的IM消息架构与微信类似,但是在to B业务场景面临了一些新的挑战。结合产品形态、分析策略,通过优化方案,来确保消息系统的可靠性、稳定性、安全性。

企业微信的to B业务繁杂,有很多定制化的需求,消息系统的设计需要考虑通用性和扩展性,以便支持各种需求。例如:撤回消息的方案,可以适用于消息任何属性的更新,满足更多场景。(本文同步发布于:http://www.52im.net/thread-3631-1-1.html)

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
1 条评论
热度
最新
wwproxy,wwchatsvr,请问ww是什么
wwproxy,wwchatsvr,请问ww是什么
回复回复点赞举报
推荐阅读
编辑精选文章
换一批
群消息已读回执,为什么这么难?(第74讲)
《架构师之路:架构设计中的100个知识点》 74.群消息已读回执 零、场景描述 每当发出一条微信消息,都希望对方尽快看到,并尽快回复,但始终不知道对方是否
架构师之路
2025/07/02
9333
群消息已读回执,为什么这么难?(第74讲)
支持百万人超大群聊的Web端IM架构设计与实践
现在IM群聊产品多种多样,有国民级的微信、QQ,企业级的钉钉、飞书,还有许多公司内部的IM工具,这些都是以客户端为主要载体。而且群聊人数通常都是有限制,微信正常群人数上限是500,QQ2000人,收费能达到3000人,这里固然有产品考量,但技术成本、资源成本也是很大的因素。笔者的业务场景上正好需要一个迭代更新快、轻量级(不依赖客户端)、单群百万群成员的纯H5的IM产品。
JackJiang
2025/03/13
2800
支持百万人超大群聊的Web端IM架构设计与实践
IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?
上一篇文章《IM群聊消息的已读回执功能该怎么实现?》是说,“很容易想到,是存一份”,被网友们骂了,大家争论的很激烈(见下图)。
JackJiang
2018/08/29
1.7K0
跟着源码学IM(十一):一套基于Netty的分布式高可用IM详细设计与实现(有源码)
本文将要分享的是如何从零实现一套基于Netty框架的分布式高可用IM系统,它将支持长连接网关管理、单聊、群聊、聊天记录查询、离线消息存储、消息推送、心跳、分布式唯一ID、红包、消息同步等功能,并且还支持集群部署。
JackJiang
2023/06/09
1.5K0
跟着源码学IM(十一):一套基于Netty的分布式高可用IM详细设计与实现(有源码)
【架构设计】高并发IM系统架构优化实践
作者简介: 少强,网名无衣蒹葭,阿里云资深工程师,主要做分布式存储和搜索相关的工作。 摘要: 介绍如何设计一个稳定、高并发、消息保序的IM系统,以及如何通过使用存储层的高级功能来优化系统架构。 在构建社交IM和朋友圈应用时,一个基本的需求是将用户发送的消息和朋友圈更新及时准确的更新给该用户的好友。为了做到这一点,通常需要为用户发送的每一条消息或者朋友圈更新设置一个序号或者ID,并且保证递增,通过这一机制来确保所有的消息能够按照完整并且以正确的顺序被接收端处理。当消息总量或者消息发送的并发数很大的时候,我们通
数据和云
2018/03/07
2.3K0
【架构设计】高并发IM系统架构优化实践
5亿用户如何高效沟通?钉钉首次对外揭秘即时消息服务DTIM
作者 | 陈万红,张世梁,杨世泉,余秋宇,谈云兵 策划 | 褚杏娟 这是钉钉第一次对外揭秘 DTIM(DingTalk IM,钉钉即时消息服务)。我们从设计原理到技术架构、从最底层存储模型到跨地域的单元化,全方位地展现了 DTIM 在实际生产中遇到各种挑战与解决方案,期望为企业级 IM 的建设贡献一臂之力。 钉钉已经有 2100 万 + 组织、5 亿 + 注册用户在使用。DTIM 为钉钉用户提供即时消息服务,用于组织内外的沟通,这些组织包括公司、政府、学校等,规模从几人到百万人不等。DTIM 有着丰富
深度学习与Python
2023/03/29
1.2K0
5亿用户如何高效沟通?钉钉首次对外揭秘即时消息服务DTIM
IM群聊消息的已读回执功能该怎么实现?
我们平时在使用即时通讯应用时候,每当发出一条聊天消息,都希望对方尽快看到,并尽快回复,但对方到底有没有真的看到?我却并不知道。
JackJiang
2018/08/29
5.2K0
现代IM系统中聊天消息的同步和存储方案探讨
IM全称是『Instant Messaging』,中文名是即时通讯。在这个高度信息化的移动互联网时代,生活中IM类产品已经成为必备品,比较有名的如钉钉、微信、QQ等以IM为核心功能的产品。当然目前微信已经成长为一个生态型产品,但其核心功能还是IM。还有一些非以IM系统为核心的应用,最典型的如一些在线游戏、社交应用,IM也是其重要的功能模块。可以说,带有社交属性的应用,IM功能一定是必不可少的。
JackJiang
2018/08/23
5K0
现代IM系统中聊天消息的同步和存储方案探讨
IM技术分享:万人群聊消息投递方案的思考和实践
本文由融云技术团队原创分享,原题“技术实践丨万人群聊的消息分发控速方案”,为使文章更好理解,内容有修订。
JackJiang
2021/08/30
2.6K0
直播系统聊天技术(七):直播间海量聊天消息的架构设计难点实践
在视频直播场景中,弹幕交互、与主播的聊天、各种业务指令等等,组成了普通用户与主播之间的互动方式。
JackJiang
2022/02/23
3K0
直播系统聊天技术(七):直播间海量聊天消息的架构设计难点实践
IM开发技术分享:浅谈IM系统中离线消息、历史消息的最佳实践
在如今的移动互联网时代,IM类产品已是我们生活中不可或缺的组成部分。像微信、钉钉、QQ等是典型的以 IM 为核心功能的社交产品。另外也有一些应用虽然IM功能不是核心,但IM能力也是其整个应用极其重要的组成部分,比如在线游戏、电商直播等应用。
JackJiang
2022/04/19
3K1
IM开发技术分享:浅谈IM系统中离线消息、历史消息的最佳实践
直播系统聊天技术(四):百度直播的海量用户实时消息系统架构演进实践
本文原题“百度直播消息服务架构实践”,由百度APP消息中台团队原创分享于“百度Geek说”公众号,为了让文章内容更通俗易懂,本次已做排版优化和内容重新划分,原文链接在文末。
JackJiang
2021/04/27
1.4K0
群消息已读回执(这个diao),究竟是推还是拉?
微信用于个人社交,产品设计上,在线状态,强制已读回执都有可能暴露个人隐私,故微信并无相关功能。
架构师之路
2018/07/27
1.7K0
群消息已读回执(这个diao),究竟是推还是拉?
阿里IM技术分享(九):深度揭密RocketMQ在钉钉IM系统中的应用实践
IM作为钉钉最核心的功能,每天需要支持海量企业用户的沟通,同时还通过 PaaS 形式为淘宝、高德等 App 提供基础的即时通讯能力,是日均千亿级消息量的 IM 平台。
JackJiang
2022/12/30
9210
阿里IM技术分享(九):深度揭密RocketMQ在钉钉IM系统中的应用实践
教你微信IM即时消息系统的架构设计
用户收发消息的终端,内置的客户端程序和服务端进行网络通信,用来承载用户的互动请求和消息接收功能。
JavaEdge
2021/02/23
2.3K0
直播系统聊天技术(六):百万人在线的直播间实时聊天消息分发技术实践
本文由融云技术团队原创分享,原题“聊天室海量消息分发之消息丢弃策略”,内容有修订。
JackJiang
2022/01/06
2.7K0
直播系统聊天技术(六):百万人在线的直播间实时聊天消息分发技术实践
一套十万级TPS的IM综合消息系统的架构实践与思考
如何设计一款高性能、高并发、高可用的im综合消息平台是很多公司发展过程中会碰到且必须要解决的问题。比如一家公司内部的通讯系统、各个互联网平台的客服咨询系统,都是离不开一款好用且维护的方便im综合消息系统。
JackJiang
2022/06/28
1.1K1
一套十万级TPS的IM综合消息系统的架构实践与思考
基于实践:一套百万消息量小规模IM系统技术要点总结
本文由公众号“后台技术汇”分享,原题“基于实践,设计一个百万级别的高可用 & 高可靠的 IM 消息系统”,原文链接在文末。由于原文存在较多错误和不准确内容,有大量修订和改动。
JackJiang
2021/11/27
2.3K0
基于实践:一套百万消息量小规模IM系统技术要点总结
《基于实践,设计一个百万级别的高可用 & 高可靠的 IM 消息系统》
https://xie.infoq.cn/article/4061081a5ce66137a8c021994
后台技术汇
2022/05/28
2.1K0
《基于实践,设计一个百万级别的高可用 & 高可靠的 IM 消息系统》
我是如何设计出高性能群消息已读回执系统的
提起群消息的已读回执啊,搞过IM的朋友估计或多或少的遇到过一些弯路。尤其是群里有几百号人甚至上千人的时候,要是还傻huhu地给每个人存一份消息副本?那简直就是给自己找罪受!前阵子用户量蹭蹭涨的时候,数据库直接扛不住了,动不动就超时报警,搞得大家真的是头皮发麻。
不惑
2025/07/24
2700
我是如何设计出高性能群消息已读回执系统的
推荐阅读
群消息已读回执,为什么这么难?(第74讲)
9333
支持百万人超大群聊的Web端IM架构设计与实践
2800
IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?
1.7K0
跟着源码学IM(十一):一套基于Netty的分布式高可用IM详细设计与实现(有源码)
1.5K0
【架构设计】高并发IM系统架构优化实践
2.3K0
5亿用户如何高效沟通?钉钉首次对外揭秘即时消息服务DTIM
1.2K0
IM群聊消息的已读回执功能该怎么实现?
5.2K0
现代IM系统中聊天消息的同步和存储方案探讨
5K0
IM技术分享:万人群聊消息投递方案的思考和实践
2.6K0
直播系统聊天技术(七):直播间海量聊天消息的架构设计难点实践
3K0
IM开发技术分享:浅谈IM系统中离线消息、历史消息的最佳实践
3K1
直播系统聊天技术(四):百度直播的海量用户实时消息系统架构演进实践
1.4K0
群消息已读回执(这个diao),究竟是推还是拉?
1.7K0
阿里IM技术分享(九):深度揭密RocketMQ在钉钉IM系统中的应用实践
9210
教你微信IM即时消息系统的架构设计
2.3K0
直播系统聊天技术(六):百万人在线的直播间实时聊天消息分发技术实践
2.7K0
一套十万级TPS的IM综合消息系统的架构实践与思考
1.1K1
基于实践:一套百万消息量小规模IM系统技术要点总结
2.3K0
《基于实践,设计一个百万级别的高可用 & 高可靠的 IM 消息系统》
2.1K0
我是如何设计出高性能群消息已读回执系统的
2700
相关推荐
群消息已读回执,为什么这么难?(第74讲)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档